Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval3 Structured version   Visualization version   GIF version

Theorem dibopelval3 40532
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐡 = (Baseβ€˜πΎ)
dibval3.l ≀ = (leβ€˜πΎ)
dibval3.h 𝐻 = (LHypβ€˜πΎ)
dibval3.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dibval3.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
dibval3.o 0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
dibval3.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibopelval3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑔,𝐾   𝑔,π‘Š   𝑇,𝑔
Allowed substitution hints:   𝐡(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   ≀ (𝑔)   𝑉(𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem dibopelval3
StepHypRef Expression
1 dibval3.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 dibval3.l . . 3 ≀ = (leβ€˜πΎ)
3 dibval3.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 dibval3.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 dibval3.o . . 3 0 = (𝑔 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
6 eqid 2726 . . 3 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
7 dibval3.i . . 3 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dibopelval2 40529 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ (𝐹 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑆 = 0 )))
9 dibval3.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
101, 2, 3, 4, 9, 6diaelval 40417 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (𝐹 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ↔ (𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋)))
1110anbi1d 629 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((𝐹 ∈ (((DIsoAβ€˜πΎ)β€˜π‘Š)β€˜π‘‹) ∧ 𝑆 = 0 ) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 0 )))
128, 11bitrd 279 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ (⟨𝐹, π‘†βŸ© ∈ (πΌβ€˜π‘‹) ↔ ((𝐹 ∈ 𝑇 ∧ (π‘…β€˜πΉ) ≀ 𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βŸ¨cop 4629   class class class wbr 5141   ↦ cmpt 5224   I cid 5566   β†Ύ cres 5671  β€˜cfv 6537  Basecbs 17153  lecple 17213  LHypclh 39368  LTrncltrn 39485  trLctrl 39542  DIsoAcdia 40412  DIsoBcdib 40522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-disoa 40413  df-dib 40523
This theorem is referenced by:  dihord2cN  40605  dihord11b  40606  dihopelvalbN  40622  dihopelvalcpre  40632  dihjatcclem4  40805
  Copyright terms: Public domain W3C validator