![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelval3 | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) |
Ref | Expression |
---|---|
dibval3.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval3.l | ⊢ ≤ = (le‘𝐾) |
dibval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dibval3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval3.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibopelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | dibval3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dibval3.o | . . 3 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
6 | eqid 2740 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
7 | dibval3.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibopelval2 41104 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 ))) |
9 | dibval3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | 1, 2, 3, 4, 9, 6 | diaelval 40992 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
11 | 10 | anbi1d 630 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 ) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
12 | 8, 11 | bitrd 279 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ‘cfv 6575 Basecbs 17260 lecple 17320 LHypclh 39943 LTrncltrn 40060 trLctrl 40117 DIsoAcdia 40987 DIsoBcdib 41097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-disoa 40988 df-dib 41098 |
This theorem is referenced by: dihord2cN 41180 dihord11b 41181 dihopelvalbN 41197 dihopelvalcpre 41207 dihjatcclem4 41380 |
Copyright terms: Public domain | W3C validator |