Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibopelval3 Structured version   Visualization version   GIF version

Theorem dibopelval3 39162
Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.)
Hypotheses
Ref Expression
dibval3.b 𝐵 = (Base‘𝐾)
dibval3.l = (le‘𝐾)
dibval3.h 𝐻 = (LHyp‘𝐾)
dibval3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval3.r 𝑅 = ((trL‘𝐾)‘𝑊)
dibval3.o 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
dibval3.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibopelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 0 )))
Distinct variable groups:   𝑔,𝐾   𝑔,𝑊   𝑇,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑅(𝑔)   𝑆(𝑔)   𝐹(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑋(𝑔)   0 (𝑔)

Proof of Theorem dibopelval3
StepHypRef Expression
1 dibval3.b . . 3 𝐵 = (Base‘𝐾)
2 dibval3.l . . 3 = (le‘𝐾)
3 dibval3.h . . 3 𝐻 = (LHyp‘𝐾)
4 dibval3.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dibval3.o . . 3 0 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
6 eqid 2738 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibval3.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibopelval2 39159 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 )))
9 dibval3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
101, 2, 3, 4, 9, 6diaelval 39047 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝐹𝑇 ∧ (𝑅𝐹) 𝑋)))
1110anbi1d 630 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 ) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 0 )))
128, 11bitrd 278 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (⟨𝐹, 𝑆⟩ ∈ (𝐼𝑋) ↔ ((𝐹𝑇 ∧ (𝑅𝐹) 𝑋) ∧ 𝑆 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cop 4567   class class class wbr 5074  cmpt 5157   I cid 5488  cres 5591  cfv 6433  Basecbs 16912  lecple 16969  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  DIsoAcdia 39042  DIsoBcdib 39152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-disoa 39043  df-dib 39153
This theorem is referenced by:  dihord2cN  39235  dihord11b  39236  dihopelvalbN  39252  dihopelvalcpre  39262  dihjatcclem4  39435
  Copyright terms: Public domain W3C validator