| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibopelval3 | Structured version Visualization version GIF version | ||
| Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014.) |
| Ref | Expression |
|---|---|
| dibval3.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibval3.l | ⊢ ≤ = (le‘𝐾) |
| dibval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dibval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dibval3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| dibval3.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibopelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibval3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibval3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibval3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | dibval3.o | . . 3 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 6 | eqid 2729 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | dibval3.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dibopelval2 41134 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 ))) |
| 9 | dibval3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 10 | 1, 2, 3, 4, 9, 6 | diaelval 41022 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ↔ (𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋))) |
| 11 | 10 | anbi1d 631 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝐹 ∈ (((DIsoA‘𝐾)‘𝑊)‘𝑋) ∧ 𝑆 = 0 ) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
| 12 | 8, 11 | bitrd 279 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝐹, 𝑆〉 ∈ (𝐼‘𝑋) ↔ ((𝐹 ∈ 𝑇 ∧ (𝑅‘𝐹) ≤ 𝑋) ∧ 𝑆 = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 ↦ cmpt 5173 I cid 5513 ↾ cres 5621 ‘cfv 6482 Basecbs 17120 lecple 17168 LHypclh 39973 LTrncltrn 40090 trLctrl 40147 DIsoAcdia 41017 DIsoBcdib 41127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-disoa 41018 df-dib 41128 |
| This theorem is referenced by: dihord2cN 41210 dihord11b 41211 dihopelvalbN 41227 dihopelvalcpre 41237 dihjatcclem4 41410 |
| Copyright terms: Public domain | W3C validator |