Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibclN Structured version   Visualization version   GIF version

Theorem dibclN 39176
Description: Closure of partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)

Proof of Theorem dibclN
StepHypRef Expression
1 dibcl.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2738 . . . 4 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
3 dibcl.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
41, 2, 3dibfna 39168 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊))
5 fnfun 6533 . . 3 (𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊) → Fun 𝐼)
64, 5syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Fun 𝐼)
7 fvelrn 6954 . 2 ((Fun 𝐼𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
86, 7sylan 580 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  dom cdm 5589  ran crn 5590  Fun wfun 6427   Fn wfn 6428  cfv 6433  HLchlt 37364  LHypclh 37998  DIsoAcdia 39042  DIsoBcdib 39152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-dib 39153
This theorem is referenced by:  dibintclN  39181
  Copyright terms: Public domain W3C validator