![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibclN | Structured version Visualization version GIF version |
Description: Closure of partial isomorphism B for a lattice πΎ. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibcl.h | β’ π» = (LHypβπΎ) |
dibcl.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibclN | β’ (((πΎ β HL β§ π β π») β§ π β dom πΌ) β (πΌβπ) β ran πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibcl.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | eqid 2737 | . . . 4 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
3 | dibcl.i | . . . 4 β’ πΌ = ((DIsoBβπΎ)βπ) | |
4 | 1, 2, 3 | dibfna 39620 | . . 3 β’ ((πΎ β HL β§ π β π») β πΌ Fn dom ((DIsoAβπΎ)βπ)) |
5 | fnfun 6603 | . . 3 β’ (πΌ Fn dom ((DIsoAβπΎ)βπ) β Fun πΌ) | |
6 | 4, 5 | syl 17 | . 2 β’ ((πΎ β HL β§ π β π») β Fun πΌ) |
7 | fvelrn 7028 | . 2 β’ ((Fun πΌ β§ π β dom πΌ) β (πΌβπ) β ran πΌ) | |
8 | 6, 7 | sylan 581 | 1 β’ (((πΎ β HL β§ π β π») β§ π β dom πΌ) β (πΌβπ) β ran πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 dom cdm 5634 ran crn 5635 Fun wfun 6491 Fn wfn 6492 βcfv 6497 HLchlt 37815 LHypclh 38450 DIsoAcdia 39494 DIsoBcdib 39604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-dib 39605 |
This theorem is referenced by: dibintclN 39633 |
Copyright terms: Public domain | W3C validator |