Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibclN Structured version   Visualization version   GIF version

Theorem dibclN 39628
Description: Closure of partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHypβ€˜πΎ)
dibcl.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibclN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) ∈ ran 𝐼)

Proof of Theorem dibclN
StepHypRef Expression
1 dibcl.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 eqid 2737 . . . 4 ((DIsoAβ€˜πΎ)β€˜π‘Š) = ((DIsoAβ€˜πΎ)β€˜π‘Š)
3 dibcl.i . . . 4 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
41, 2, 3dibfna 39620 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom ((DIsoAβ€˜πΎ)β€˜π‘Š))
5 fnfun 6603 . . 3 (𝐼 Fn dom ((DIsoAβ€˜πΎ)β€˜π‘Š) β†’ Fun 𝐼)
64, 5syl 17 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Fun 𝐼)
7 fvelrn 7028 . 2 ((Fun 𝐼 ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) ∈ ran 𝐼)
86, 7sylan 581 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) β†’ (πΌβ€˜π‘‹) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  dom cdm 5634  ran crn 5635  Fun wfun 6491   Fn wfn 6492  β€˜cfv 6497  HLchlt 37815  LHypclh 38450  DIsoAcdia 39494  DIsoBcdib 39604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-dib 39605
This theorem is referenced by:  dibintclN  39633
  Copyright terms: Public domain W3C validator