![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibclN | Structured version Visualization version GIF version |
Description: Closure of partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibclN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibcl.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2731 | . . . 4 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
3 | dibcl.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | dibfna 39830 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊)) |
5 | fnfun 6638 | . . 3 ⊢ (𝐼 Fn dom ((DIsoA‘𝐾)‘𝑊) → Fun 𝐼) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) |
7 | fvelrn 7063 | . 2 ⊢ ((Fun 𝐼 ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) | |
8 | 6, 7 | sylan 580 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼‘𝑋) ∈ ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 dom cdm 5669 ran crn 5670 Fun wfun 6526 Fn wfn 6527 ‘cfv 6532 HLchlt 38025 LHypclh 38660 DIsoAcdia 39704 DIsoBcdib 39814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-dib 39815 |
This theorem is referenced by: dibintclN 39843 |
Copyright terms: Public domain | W3C validator |