![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibclN | Structured version Visualization version GIF version |
Description: Closure of partial isomorphism B for a lattice πΎ. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibcl.h | β’ π» = (LHypβπΎ) |
dibcl.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibclN | β’ (((πΎ β HL β§ π β π») β§ π β dom πΌ) β (πΌβπ) β ran πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibcl.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | eqid 2724 | . . . 4 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
3 | dibcl.i | . . . 4 β’ πΌ = ((DIsoBβπΎ)βπ) | |
4 | 1, 2, 3 | dibfna 40529 | . . 3 β’ ((πΎ β HL β§ π β π») β πΌ Fn dom ((DIsoAβπΎ)βπ)) |
5 | fnfun 6640 | . . 3 β’ (πΌ Fn dom ((DIsoAβπΎ)βπ) β Fun πΌ) | |
6 | 4, 5 | syl 17 | . 2 β’ ((πΎ β HL β§ π β π») β Fun πΌ) |
7 | fvelrn 7069 | . 2 β’ ((Fun πΌ β§ π β dom πΌ) β (πΌβπ) β ran πΌ) | |
8 | 6, 7 | sylan 579 | 1 β’ (((πΎ β HL β§ π β π») β§ π β dom πΌ) β (πΌβπ) β ran πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 dom cdm 5667 ran crn 5668 Fun wfun 6528 Fn wfn 6529 βcfv 6534 HLchlt 38724 LHypclh 39359 DIsoAcdia 40403 DIsoBcdib 40513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-dib 40514 |
This theorem is referenced by: dibintclN 40542 |
Copyright terms: Public domain | W3C validator |