Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Structured version   Visualization version   GIF version

Theorem dibf11N 39102
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibf11N ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)

Proof of Theorem dibf11N
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
3 dibcl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibcl.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
51, 2, 3, 4dibfnN 39097 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
6 fnfun 6517 . . . 4 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼)
7 funfn 6448 . . . 4 (Fun 𝐼𝐼 Fn dom 𝐼)
86, 7sylib 217 . . 3 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼)
95, 8syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom 𝐼)
10 eqidd 2739 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = ran 𝐼)
111, 2, 3, 4dibeldmN 39099 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
121, 2, 3, 4dibeldmN 39099 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
1311, 12anbi12d 630 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))))
141, 2, 3, 4dib11N 39101 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) ↔ 𝑥 = 𝑦))
1514biimpd 228 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
16153expib 1120 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1713, 16sylbid 239 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3113 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
19 dff1o6 7128 . 2 (𝐼:dom 𝐼1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
209, 10, 18, 19syl3anbrc 1341 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067   class class class wbr 5070  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  lecple 16895  HLchlt 37291  LHypclh 37925  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970  df-dib 39080
This theorem is referenced by:  dibintclN  39108
  Copyright terms: Public domain W3C validator