Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Structured version   Visualization version   GIF version

Theorem dibf11N 38291
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibf11N ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)

Proof of Theorem dibf11N
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2821 . . . 4 (le‘𝐾) = (le‘𝐾)
3 dibcl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibcl.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
51, 2, 3, 4dibfnN 38286 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
6 fnfun 6447 . . . 4 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼)
7 funfn 6379 . . . 4 (Fun 𝐼𝐼 Fn dom 𝐼)
86, 7sylib 220 . . 3 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼)
95, 8syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom 𝐼)
10 eqidd 2822 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = ran 𝐼)
111, 2, 3, 4dibeldmN 38288 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
121, 2, 3, 4dibeldmN 38288 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
1311, 12anbi12d 632 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))))
141, 2, 3, 4dib11N 38290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) ↔ 𝑥 = 𝑦))
1514biimpd 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
16153expib 1118 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1713, 16sylbid 242 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3190 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
19 dff1o6 7026 . 2 (𝐼:dom 𝐼1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
209, 10, 18, 19syl3anbrc 1339 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142   class class class wbr 5058  dom cdm 5549  ran crn 5550  Fun wfun 6343   Fn wfn 6344  1-1-ontowf1o 6348  cfv 6349  Basecbs 16477  lecple 16566  HLchlt 36480  LHypclh 37114  DIsoBcdib 38268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-undef 7933  df-map 8402  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-disoa 38159  df-dib 38269
This theorem is referenced by:  dibintclN  38297
  Copyright terms: Public domain W3C validator