Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Structured version   Visualization version   GIF version

Theorem dibf11N 38942
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibf11N ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)

Proof of Theorem dibf11N
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
3 dibcl.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dibcl.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
51, 2, 3, 4dibfnN 38937 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊})
6 fnfun 6497 . . . 4 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼)
7 funfn 6428 . . . 4 (Fun 𝐼𝐼 Fn dom 𝐼)
86, 7sylib 221 . . 3 (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼)
95, 8syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn dom 𝐼)
10 eqidd 2739 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = ran 𝐼)
111, 2, 3, 4dibeldmN 38939 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)))
121, 2, 3, 4dibeldmN 38939 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))
1311, 12anbi12d 634 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))))
141, 2, 3, 4dib11N 38941 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) ↔ 𝑥 = 𝑦))
1514biimpd 232 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
16153expib 1124 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1713, 16sylbid 243 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼) → ((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
1817ralrimivv 3112 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦))
19 dff1o6 7105 . 2 (𝐼:dom 𝐼1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼𝑦 ∈ dom 𝐼((𝐼𝑥) = (𝐼𝑦) → 𝑥 = 𝑦)))
209, 10, 18, 19syl3anbrc 1345 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  wral 3062  {crab 3066   class class class wbr 5068  dom cdm 5566  ran crn 5567  Fun wfun 6392   Fn wfn 6393  1-1-ontowf1o 6397  cfv 6398  Basecbs 16788  lecple 16837  HLchlt 37131  LHypclh 37765  DIsoBcdib 38919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-riotaBAD 36734
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-undef 8036  df-map 8531  df-proset 17830  df-poset 17848  df-plt 17864  df-lub 17880  df-glb 17881  df-join 17882  df-meet 17883  df-p0 17959  df-p1 17960  df-lat 17966  df-clat 18033  df-oposet 36957  df-ol 36959  df-oml 36960  df-covers 37047  df-ats 37048  df-atl 37079  df-cvlat 37103  df-hlat 37132  df-llines 37279  df-lplanes 37280  df-lvols 37281  df-lines 37282  df-psubsp 37284  df-pmap 37285  df-padd 37577  df-lhyp 37769  df-laut 37770  df-ldil 37885  df-ltrn 37886  df-trl 37940  df-disoa 38810  df-dib 38920
This theorem is referenced by:  dibintclN  38948
  Copyright terms: Public domain W3C validator