Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibf11N Structured version   Visualization version   GIF version

Theorem dibf11N 40020
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHypβ€˜πΎ)
dibcl.i 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dibf11N ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)

Proof of Theorem dibf11N
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2732 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
3 dibcl.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dibcl.i . . . 4 𝐼 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
51, 2, 3, 4dibfnN 40015 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š})
6 fnfun 6646 . . . 4 (𝐼 Fn {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š} β†’ Fun 𝐼)
7 funfn 6575 . . . 4 (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼)
86, 7sylib 217 . . 3 (𝐼 Fn {π‘₯ ∈ (Baseβ€˜πΎ) ∣ π‘₯(leβ€˜πΎ)π‘Š} β†’ 𝐼 Fn dom 𝐼)
95, 8syl 17 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼 Fn dom 𝐼)
10 eqidd 2733 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ran 𝐼 = ran 𝐼)
111, 2, 3, 4dibeldmN 40017 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (π‘₯ ∈ dom 𝐼 ↔ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š)))
121, 2, 3, 4dibeldmN 40017 . . . . 5 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)))
1311, 12anbi12d 631 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((π‘₯ ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) ↔ ((π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) ∧ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š))))
141, 2, 3, 4dib11N 40019 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) ∧ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)) β†’ ((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) ↔ π‘₯ = 𝑦))
1514biimpd 228 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) ∧ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)) β†’ ((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) β†’ π‘₯ = 𝑦))
16153expib 1122 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (((π‘₯ ∈ (Baseβ€˜πΎ) ∧ π‘₯(leβ€˜πΎ)π‘Š) ∧ (𝑦 ∈ (Baseβ€˜πΎ) ∧ 𝑦(leβ€˜πΎ)π‘Š)) β†’ ((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) β†’ π‘₯ = 𝑦)))
1713, 16sylbid 239 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((π‘₯ ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) β†’ ((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) β†’ π‘₯ = 𝑦)))
1817ralrimivv 3198 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆ€π‘₯ ∈ dom πΌβˆ€π‘¦ ∈ dom 𝐼((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) β†’ π‘₯ = 𝑦))
19 dff1o6 7269 . 2 (𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ βˆ€π‘₯ ∈ dom πΌβˆ€π‘¦ ∈ dom 𝐼((πΌβ€˜π‘₯) = (πΌβ€˜π‘¦) β†’ π‘₯ = 𝑦)))
209, 10, 18, 19syl3anbrc 1343 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐼:dom 𝐼–1-1-ontoβ†’ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432   class class class wbr 5147  dom cdm 5675  ran crn 5676  Fun wfun 6534   Fn wfn 6535  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  Basecbs 17140  lecple 17200  HLchlt 38208  LHypclh 38843  DIsoBcdib 39997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-disoa 39888  df-dib 39998
This theorem is referenced by:  dibintclN  40026
  Copyright terms: Public domain W3C validator