| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibf11N | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one function. Part of Lemma M of [Crawley] p. 120 line 27. (Contributed by NM, 4-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dibcl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibcl.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibf11N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | dibcl.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dibcl.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 5 | 1, 2, 3, 4 | dibfnN 41278 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
| 6 | fnfun 6588 | . . . 4 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → Fun 𝐼) | |
| 7 | funfn 6518 | . . . 4 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝐼 Fn {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} → 𝐼 Fn dom 𝐼) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼 Fn dom 𝐼) |
| 10 | eqidd 2734 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = ran 𝐼) | |
| 11 | 1, 2, 3, 4 | dibeldmN 41280 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑥 ∈ dom 𝐼 ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊))) |
| 12 | 1, 2, 3, 4 | dibeldmN 41280 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))) |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) ↔ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)))) |
| 14 | 1, 2, 3, 4 | dib11N 41282 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) ↔ 𝑥 = 𝑦)) |
| 15 | 14 | biimpd 229 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 16 | 15 | 3expib 1122 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
| 17 | 13, 16 | sylbid 240 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((𝑥 ∈ dom 𝐼 ∧ 𝑦 ∈ dom 𝐼) → ((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) |
| 18 | 17 | ralrimivv 3174 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦)) |
| 19 | dff1o6 7217 | . 2 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 ↔ (𝐼 Fn dom 𝐼 ∧ ran 𝐼 = ran 𝐼 ∧ ∀𝑥 ∈ dom 𝐼∀𝑦 ∈ dom 𝐼((𝐼‘𝑥) = (𝐼‘𝑦) → 𝑥 = 𝑦))) | |
| 20 | 9, 10, 18, 19 | syl3anbrc 1344 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 class class class wbr 5095 dom cdm 5621 ran crn 5622 Fun wfun 6482 Fn wfn 6483 –1-1-onto→wf1o 6487 ‘cfv 6488 Basecbs 17124 lecple 17172 HLchlt 39472 LHypclh 40106 DIsoBcdib 41260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-riotaBAD 39075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-undef 8211 df-map 8760 df-proset 18204 df-poset 18223 df-plt 18238 df-lub 18254 df-glb 18255 df-join 18256 df-meet 18257 df-p0 18333 df-p1 18334 df-lat 18342 df-clat 18409 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-atl 39420 df-cvlat 39444 df-hlat 39473 df-llines 39620 df-lplanes 39621 df-lvols 39622 df-lines 39623 df-psubsp 39625 df-pmap 39626 df-padd 39918 df-lhyp 40110 df-laut 40111 df-ldil 40226 df-ltrn 40227 df-trl 40281 df-disoa 41151 df-dib 41261 |
| This theorem is referenced by: dibintclN 41289 |
| Copyright terms: Public domain | W3C validator |