Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibdmN Structured version   Visualization version   GIF version

Theorem dibdmN 41140
Description: Domain of the partial isomorphism A. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dibfn.b 𝐵 = (Base‘𝐾)
dibfn.l = (le‘𝐾)
dibfn.h 𝐻 = (LHyp‘𝐾)
dibfn.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibdmN ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑥𝐵𝑥 𝑊})
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊
Allowed substitution hints:   𝐻(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem dibdmN
StepHypRef Expression
1 dibfn.b . . 3 𝐵 = (Base‘𝐾)
2 dibfn.l . . 3 = (le‘𝐾)
3 dibfn.h . . 3 𝐻 = (LHyp‘𝐾)
4 dibfn.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
51, 2, 3, 4dibfnN 41139 . 2 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑥𝐵𝑥 𝑊})
65fndmd 6587 1 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = {𝑥𝐵𝑥 𝑊})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394   class class class wbr 5092  dom cdm 5619  cfv 6482  Basecbs 17120  lecple 17168  LHypclh 39967  DIsoBcdib 41121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-disoa 41012  df-dib 41122
This theorem is referenced by:  dibglbN  41149  dibintclN  41150  dihglblem3N  41278
  Copyright terms: Public domain W3C validator