| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicval2 | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| dicval2 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . 3 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dicval 41177 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}) |
| 9 | dicval2.g | . . . . . 6 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
| 10 | 9 | fveq2i 6864 | . . . . 5 ⊢ (𝑠‘𝐺) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) |
| 11 | 10 | eqeq2i 2743 | . . . 4 ⊢ (𝑓 = (𝑠‘𝐺) ↔ 𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄))) |
| 12 | 11 | anbi1i 624 | . . 3 ⊢ ((𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸) ↔ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)) |
| 13 | 12 | opabbii 5177 | . 2 ⊢ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄)) ∧ 𝑠 ∈ 𝐸)} |
| 14 | 8, 13 | eqtr4di 2783 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 {copab 5172 ‘cfv 6514 ℩crio 7346 lecple 17234 occoc 17235 Atomscatm 39263 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 DIsoCcdic 41173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-dic 41174 |
| This theorem is referenced by: dicelval3 41181 diclspsn 41195 dih1dimatlem 41330 |
| Copyright terms: Public domain | W3C validator |