Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval2 Structured version   Visualization version   GIF version

Theorem dicval2 40050
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
dicval.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
dicval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dicval.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicval.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicval2.g 𝐺 = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)
Assertion
Ref Expression
dicval2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,π‘Š,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   ≀ (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval2
StepHypRef Expression
1 dicval.l . . 3 ≀ = (leβ€˜πΎ)
2 dicval.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 dicval.h . . 3 𝐻 = (LHypβ€˜πΎ)
4 dicval.p . . 3 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
5 dicval.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 dicval.e . . 3 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 dicval.i . . 3 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7dicval 40047 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)})
9 dicval2.g . . . . . 6 𝐺 = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)
109fveq2i 6895 . . . . 5 (π‘ β€˜πΊ) = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄))
1110eqeq2i 2746 . . . 4 (𝑓 = (π‘ β€˜πΊ) ↔ 𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)))
1211anbi1i 625 . . 3 ((𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸) ↔ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸))
1312opabbii 5216 . 2 {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)} = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜(℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)) ∧ 𝑠 ∈ 𝐸)}
148, 13eqtr4di 2791 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   class class class wbr 5149  {copab 5211  β€˜cfv 6544  β„©crio 7364  lecple 17204  occoc 17205  Atomscatm 38133  LHypclh 38855  LTrncltrn 38972  TEndoctendo 39623  DIsoCcdic 40043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-dic 40044
This theorem is referenced by:  dicelval3  40051  diclspsn  40065  dih1dimatlem  40200
  Copyright terms: Public domain W3C validator