Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicval2 Structured version   Visualization version   GIF version

Theorem dicval2 41218
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 20-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
Assertion
Ref Expression
dicval2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)})
Distinct variable groups:   𝑓,𝑔,𝑠,𝐾   𝑇,𝑔   𝑓,𝑊,𝑔,𝑠   𝑓,𝐸,𝑠   𝑃,𝑓   𝑄,𝑓,𝑔,𝑠   𝑇,𝑓
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   𝐼(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem dicval2
StepHypRef Expression
1 dicval.l . . 3 = (le‘𝐾)
2 dicval.a . . 3 𝐴 = (Atoms‘𝐾)
3 dicval.h . . 3 𝐻 = (LHyp‘𝐾)
4 dicval.p . . 3 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 41215 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
9 dicval2.g . . . . . 6 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
109fveq2i 6820 . . . . 5 (𝑠𝐺) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))
1110eqeq2i 2744 . . . 4 (𝑓 = (𝑠𝐺) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1211anbi1i 624 . . 3 ((𝑓 = (𝑠𝐺) ∧ 𝑠𝐸) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸))
1312opabbii 5153 . 2 {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)}
148, 13eqtr4di 2784 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5086  {copab 5148  cfv 6476  crio 7297  lecple 17163  occoc 17164  Atomscatm 39302  LHypclh 40023  LTrncltrn 40140  TEndoctendo 40791  DIsoCcdic 41211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-dic 41212
This theorem is referenced by:  dicelval3  41219  diclspsn  41233  dih1dimatlem  41368
  Copyright terms: Public domain W3C validator