Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval3 Structured version   Visualization version   GIF version

Theorem dicelval3 40507
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dicval.l ≀ = (leβ€˜πΎ)
dicval.a 𝐴 = (Atomsβ€˜πΎ)
dicval.h 𝐻 = (LHypβ€˜πΎ)
dicval.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
dicval.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dicval.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
dicval.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dicval2.g 𝐺 = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)
Assertion
Ref Expression
dicelval3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ βˆƒπ‘  ∈ 𝐸 π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
Distinct variable groups:   𝑔,𝑠,𝐾   𝑇,𝑔   𝑔,π‘Š,𝑠   𝐸,𝑠   𝑄,𝑔,𝑠   π‘Œ,𝑠
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑔,𝑠)   𝐻(𝑔,𝑠)   𝐼(𝑔,𝑠)   ≀ (𝑔,𝑠)   𝑉(𝑔,𝑠)   π‘Œ(𝑔)

Proof of Theorem dicelval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 ≀ = (leβ€˜πΎ)
2 dicval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
3 dicval.h . . . 4 𝐻 = (LHypβ€˜πΎ)
4 dicval.p . . . 4 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
5 dicval.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 dicval.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 dicval.i . . . 4 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
8 dicval2.g . . . 4 𝐺 = (℩𝑔 ∈ 𝑇 (π‘”β€˜π‘ƒ) = 𝑄)
91, 2, 3, 4, 5, 6, 7, 8dicval2 40506 . . 3 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)})
109eleq2d 2811 . 2 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ π‘Œ ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)}))
11 excom 2154 . . . 4 (βˆƒπ‘“βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ βˆƒπ‘ βˆƒπ‘“(π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)))
12 an12 642 . . . . . . 7 ((π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑓 = (π‘ β€˜πΊ) ∧ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ 𝑠 ∈ 𝐸)))
1312exbii 1842 . . . . . 6 (βˆƒπ‘“(π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ βˆƒπ‘“(𝑓 = (π‘ β€˜πΊ) ∧ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ 𝑠 ∈ 𝐸)))
14 fvex 6894 . . . . . . 7 (π‘ β€˜πΊ) ∈ V
15 opeq1 4865 . . . . . . . . 9 (𝑓 = (π‘ β€˜πΊ) β†’ βŸ¨π‘“, π‘ βŸ© = ⟨(π‘ β€˜πΊ), π‘ βŸ©)
1615eqeq2d 2735 . . . . . . . 8 (𝑓 = (π‘ β€˜πΊ) β†’ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ↔ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
1716anbi1d 629 . . . . . . 7 (𝑓 = (π‘ β€˜πΊ) β†’ ((π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ 𝑠 ∈ 𝐸) ↔ (π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ© ∧ 𝑠 ∈ 𝐸)))
1814, 17ceqsexv 3518 . . . . . 6 (βˆƒπ‘“(𝑓 = (π‘ β€˜πΊ) ∧ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ 𝑠 ∈ 𝐸)) ↔ (π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ© ∧ 𝑠 ∈ 𝐸))
19 ancom 460 . . . . . 6 ((π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ© ∧ 𝑠 ∈ 𝐸) ↔ (𝑠 ∈ 𝐸 ∧ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
2013, 18, 193bitri 297 . . . . 5 (βˆƒπ‘“(π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑠 ∈ 𝐸 ∧ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
2120exbii 1842 . . . 4 (βˆƒπ‘ βˆƒπ‘“(π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ βˆƒπ‘ (𝑠 ∈ 𝐸 ∧ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
2211, 21bitri 275 . . 3 (βˆƒπ‘“βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)) ↔ βˆƒπ‘ (𝑠 ∈ 𝐸 ∧ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
23 elopab 5517 . . 3 (π‘Œ ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)} ↔ βˆƒπ‘“βˆƒπ‘ (π‘Œ = βŸ¨π‘“, π‘ βŸ© ∧ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)))
24 df-rex 3063 . . 3 (βˆƒπ‘  ∈ 𝐸 π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ© ↔ βˆƒπ‘ (𝑠 ∈ 𝐸 ∧ π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
2522, 23, 243bitr4i 303 . 2 (π‘Œ ∈ {βŸ¨π‘“, π‘ βŸ© ∣ (𝑓 = (π‘ β€˜πΊ) ∧ 𝑠 ∈ 𝐸)} ↔ βˆƒπ‘  ∈ 𝐸 π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©)
2610, 25bitrdi 287 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘Œ ∈ (πΌβ€˜π‘„) ↔ βˆƒπ‘  ∈ 𝐸 π‘Œ = ⟨(π‘ β€˜πΊ), π‘ βŸ©))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆƒwrex 3062  βŸ¨cop 4626   class class class wbr 5138  {copab 5200  β€˜cfv 6533  β„©crio 7356  lecple 17202  occoc 17203  Atomscatm 38589  LHypclh 39311  LTrncltrn 39428  TEndoctendo 40079  DIsoCcdic 40499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-dic 40500
This theorem is referenced by:  cdlemn11pre  40537  dihord2pre  40552
  Copyright terms: Public domain W3C validator