Step | Hyp | Ref
| Expression |
1 | | dicval.l |
. . . 4
β’ β€ =
(leβπΎ) |
2 | | dicval.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
3 | | dicval.h |
. . . 4
β’ π» = (LHypβπΎ) |
4 | | dicval.p |
. . . 4
β’ π = ((ocβπΎ)βπ) |
5 | | dicval.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
6 | | dicval.e |
. . . 4
β’ πΈ = ((TEndoβπΎ)βπ) |
7 | | dicval.i |
. . . 4
β’ πΌ = ((DIsoCβπΎ)βπ) |
8 | | dicval2.g |
. . . 4
β’ πΊ = (β©π β π (πβπ) = π) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dicval2 40506 |
. . 3
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π, π β© β£ (π = (π βπΊ) β§ π β πΈ)}) |
10 | 9 | eleq2d 2811 |
. 2
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β π β {β¨π, π β© β£ (π = (π βπΊ) β§ π β πΈ)})) |
11 | | excom 2154 |
. . . 4
β’
(βπβπ (π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β βπ βπ(π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ))) |
12 | | an12 642 |
. . . . . . 7
β’ ((π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β (π = (π βπΊ) β§ (π = β¨π, π β© β§ π β πΈ))) |
13 | 12 | exbii 1842 |
. . . . . 6
β’
(βπ(π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β βπ(π = (π βπΊ) β§ (π = β¨π, π β© β§ π β πΈ))) |
14 | | fvex 6894 |
. . . . . . 7
β’ (π βπΊ) β V |
15 | | opeq1 4865 |
. . . . . . . . 9
β’ (π = (π βπΊ) β β¨π, π β© = β¨(π βπΊ), π β©) |
16 | 15 | eqeq2d 2735 |
. . . . . . . 8
β’ (π = (π βπΊ) β (π = β¨π, π β© β π = β¨(π βπΊ), π β©)) |
17 | 16 | anbi1d 629 |
. . . . . . 7
β’ (π = (π βπΊ) β ((π = β¨π, π β© β§ π β πΈ) β (π = β¨(π βπΊ), π β© β§ π β πΈ))) |
18 | 14, 17 | ceqsexv 3518 |
. . . . . 6
β’
(βπ(π = (π βπΊ) β§ (π = β¨π, π β© β§ π β πΈ)) β (π = β¨(π βπΊ), π β© β§ π β πΈ)) |
19 | | ancom 460 |
. . . . . 6
β’ ((π = β¨(π βπΊ), π β© β§ π β πΈ) β (π β πΈ β§ π = β¨(π βπΊ), π β©)) |
20 | 13, 18, 19 | 3bitri 297 |
. . . . 5
β’
(βπ(π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β (π β πΈ β§ π = β¨(π βπΊ), π β©)) |
21 | 20 | exbii 1842 |
. . . 4
β’
(βπ βπ(π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β βπ (π β πΈ β§ π = β¨(π βπΊ), π β©)) |
22 | 11, 21 | bitri 275 |
. . 3
β’
(βπβπ (π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ)) β βπ (π β πΈ β§ π = β¨(π βπΊ), π β©)) |
23 | | elopab 5517 |
. . 3
β’ (π β {β¨π, π β© β£ (π = (π βπΊ) β§ π β πΈ)} β βπβπ (π = β¨π, π β© β§ (π = (π βπΊ) β§ π β πΈ))) |
24 | | df-rex 3063 |
. . 3
β’
(βπ β
πΈ π = β¨(π βπΊ), π β© β βπ (π β πΈ β§ π = β¨(π βπΊ), π β©)) |
25 | 22, 23, 24 | 3bitr4i 303 |
. 2
β’ (π β {β¨π, π β© β£ (π = (π βπΊ) β§ π β πΈ)} β βπ β πΈ π = β¨(π βπΊ), π β©) |
26 | 10, 25 | bitrdi 287 |
1
β’ (((πΎ β π β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β (πΌβπ) β βπ β πΈ π = β¨(π βπΊ), π β©)) |