Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval3 Structured version   Visualization version   GIF version

Theorem dicelval3 37201
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
Assertion
Ref Expression
dicelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Distinct variable groups:   𝑔,𝑠,𝐾   𝑇,𝑔   𝑔,𝑊,𝑠   𝐸,𝑠   𝑄,𝑔,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑔,𝑠)   𝐻(𝑔,𝑠)   𝐼(𝑔,𝑠)   (𝑔,𝑠)   𝑉(𝑔,𝑠)   𝑌(𝑔)

Proof of Theorem dicelval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
8 dicval2.g . . . 4 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
91, 2, 3, 4, 5, 6, 7, 8dicval2 37200 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)})
109eleq2d 2864 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)}))
11 excom 2205 . . . 4 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
12 an12 636 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
1312exbii 1944 . . . . . 6 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
14 fvex 6424 . . . . . . 7 (𝑠𝐺) ∈ V
15 opeq1 4593 . . . . . . . . 9 (𝑓 = (𝑠𝐺) → ⟨𝑓, 𝑠⟩ = ⟨(𝑠𝐺), 𝑠⟩)
1615eqeq2d 2809 . . . . . . . 8 (𝑓 = (𝑠𝐺) → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
1716anbi1d 624 . . . . . . 7 (𝑓 = (𝑠𝐺) → ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸)))
1814, 17ceqsexv 3430 . . . . . 6 (∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸))
19 ancom 453 . . . . . 6 ((𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2013, 18, 193bitri 289 . . . . 5 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2120exbii 1944 . . . 4 (∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2211, 21bitri 267 . . 3 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
23 elopab 5179 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
24 df-rex 3095 . . 3 (∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2522, 23, 243bitr4i 295 . 2 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩)
2610, 25syl6bb 279 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wex 1875  wcel 2157  wrex 3090  cop 4374   class class class wbr 4843  {copab 4905  cfv 6101  crio 6838  lecple 16274  occoc 16275  Atomscatm 35284  LHypclh 36005  LTrncltrn 36122  TEndoctendo 36773  DIsoCcdic 37193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-dic 37194
This theorem is referenced by:  cdlemn11pre  37231  dihord2pre  37246
  Copyright terms: Public domain W3C validator