| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval3 | Structured version Visualization version GIF version | ||
| Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| dicelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | dicval2.g | . . . 4 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dicval2 41224 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
| 10 | 9 | eleq2d 2817 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)})) |
| 11 | excom 2165 | . . . 4 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
| 12 | an12 645 | . . . . . . 7 ⊢ ((𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) | |
| 13 | 12 | exbii 1849 | . . . . . 6 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
| 14 | fvex 6835 | . . . . . . 7 ⊢ (𝑠‘𝐺) ∈ V | |
| 15 | opeq1 4825 | . . . . . . . . 9 ⊢ (𝑓 = (𝑠‘𝐺) → 〈𝑓, 𝑠〉 = 〈(𝑠‘𝐺), 𝑠〉) | |
| 16 | 15 | eqeq2d 2742 | . . . . . . . 8 ⊢ (𝑓 = (𝑠‘𝐺) → (𝑌 = 〈𝑓, 𝑠〉 ↔ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 17 | 16 | anbi1d 631 | . . . . . . 7 ⊢ (𝑓 = (𝑠‘𝐺) → ((𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
| 18 | 14, 17 | ceqsexv 3487 | . . . . . 6 ⊢ (∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸)) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸)) |
| 19 | ancom 460 | . . . . . 6 ⊢ ((𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
| 20 | 13, 18, 19 | 3bitri 297 | . . . . 5 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 21 | 20 | exbii 1849 | . . . 4 ⊢ (∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 22 | 11, 21 | bitri 275 | . . 3 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 23 | elopab 5467 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
| 24 | df-rex 3057 | . . 3 ⊢ (∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
| 25 | 22, 23, 24 | 3bitr4i 303 | . 2 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉) |
| 26 | 10, 25 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 〈cop 4582 class class class wbr 5091 {copab 5153 ‘cfv 6481 ℩crio 7302 lecple 17168 occoc 17169 Atomscatm 39308 LHypclh 40029 LTrncltrn 40146 TEndoctendo 40797 DIsoCcdic 41217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-dic 41218 |
| This theorem is referenced by: cdlemn11pre 41255 dihord2pre 41270 |
| Copyright terms: Public domain | W3C validator |