Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval3 Structured version   Visualization version   GIF version

Theorem dicelval3 41199
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
Assertion
Ref Expression
dicelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Distinct variable groups:   𝑔,𝑠,𝐾   𝑇,𝑔   𝑔,𝑊,𝑠   𝐸,𝑠   𝑄,𝑔,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑔,𝑠)   𝐻(𝑔,𝑠)   𝐼(𝑔,𝑠)   (𝑔,𝑠)   𝑉(𝑔,𝑠)   𝑌(𝑔)

Proof of Theorem dicelval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
8 dicval2.g . . . 4 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
91, 2, 3, 4, 5, 6, 7, 8dicval2 41198 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)})
109eleq2d 2820 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)}))
11 excom 2162 . . . 4 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
12 an12 645 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
1312exbii 1848 . . . . . 6 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
14 fvex 6889 . . . . . . 7 (𝑠𝐺) ∈ V
15 opeq1 4849 . . . . . . . . 9 (𝑓 = (𝑠𝐺) → ⟨𝑓, 𝑠⟩ = ⟨(𝑠𝐺), 𝑠⟩)
1615eqeq2d 2746 . . . . . . . 8 (𝑓 = (𝑠𝐺) → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
1716anbi1d 631 . . . . . . 7 (𝑓 = (𝑠𝐺) → ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸)))
1814, 17ceqsexv 3511 . . . . . 6 (∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸))
19 ancom 460 . . . . . 6 ((𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2013, 18, 193bitri 297 . . . . 5 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2120exbii 1848 . . . 4 (∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2211, 21bitri 275 . . 3 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
23 elopab 5502 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
24 df-rex 3061 . . 3 (∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2522, 23, 243bitr4i 303 . 2 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩)
2610, 25bitrdi 287 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  cop 4607   class class class wbr 5119  {copab 5181  cfv 6531  crio 7361  lecple 17278  occoc 17279  Atomscatm 39281  LHypclh 40003  LTrncltrn 40120  TEndoctendo 40771  DIsoCcdic 41191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-dic 41192
This theorem is referenced by:  cdlemn11pre  41229  dihord2pre  41244
  Copyright terms: Public domain W3C validator