Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelval3 Structured version   Visualization version   GIF version

Theorem dicelval3 39121
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
dicval2.g 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
Assertion
Ref Expression
dicelval3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Distinct variable groups:   𝑔,𝑠,𝐾   𝑇,𝑔   𝑔,𝑊,𝑠   𝐸,𝑠   𝑄,𝑔,𝑠   𝑌,𝑠
Allowed substitution hints:   𝐴(𝑔,𝑠)   𝑃(𝑔,𝑠)   𝑇(𝑠)   𝐸(𝑔)   𝐺(𝑔,𝑠)   𝐻(𝑔,𝑠)   𝐼(𝑔,𝑠)   (𝑔,𝑠)   𝑉(𝑔,𝑠)   𝑌(𝑔)

Proof of Theorem dicelval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
8 dicval2.g . . . 4 𝐺 = (𝑔𝑇 (𝑔𝑃) = 𝑄)
91, 2, 3, 4, 5, 6, 7, 8dicval2 39120 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)})
109eleq2d 2824 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)}))
11 excom 2164 . . . 4 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
12 an12 641 . . . . . . 7 ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
1312exbii 1851 . . . . . 6 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)))
14 fvex 6769 . . . . . . 7 (𝑠𝐺) ∈ V
15 opeq1 4801 . . . . . . . . 9 (𝑓 = (𝑠𝐺) → ⟨𝑓, 𝑠⟩ = ⟨(𝑠𝐺), 𝑠⟩)
1615eqeq2d 2749 . . . . . . . 8 (𝑓 = (𝑠𝐺) → (𝑌 = ⟨𝑓, 𝑠⟩ ↔ 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
1716anbi1d 629 . . . . . . 7 (𝑓 = (𝑠𝐺) → ((𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸)))
1814, 17ceqsexv 3469 . . . . . 6 (∃𝑓(𝑓 = (𝑠𝐺) ∧ (𝑌 = ⟨𝑓, 𝑠⟩ ∧ 𝑠𝐸)) ↔ (𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸))
19 ancom 460 . . . . . 6 ((𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ∧ 𝑠𝐸) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2013, 18, 193bitri 296 . . . . 5 (∃𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ (𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2120exbii 1851 . . . 4 (∃𝑠𝑓(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2211, 21bitri 274 . . 3 (∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)) ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
23 elopab 5433 . . 3 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑓𝑠(𝑌 = ⟨𝑓, 𝑠⟩ ∧ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)))
24 df-rex 3069 . . 3 (∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩ ↔ ∃𝑠(𝑠𝐸𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
2522, 23, 243bitr4i 302 . 2 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠𝐺) ∧ 𝑠𝐸)} ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩)
2610, 25bitrdi 286 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ ∃𝑠𝐸 𝑌 = ⟨(𝑠𝐺), 𝑠⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  cop 4564   class class class wbr 5070  {copab 5132  cfv 6418  crio 7211  lecple 16895  occoc 16896  Atomscatm 37204  LHypclh 37925  LTrncltrn 38042  TEndoctendo 38693  DIsoCcdic 39113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-dic 39114
This theorem is referenced by:  cdlemn11pre  39151  dihord2pre  39166
  Copyright terms: Public domain W3C validator