![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval3 | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
dicval.l | ⊢ ≤ = (le‘𝐾) |
dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
dicelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | dicval2.g | . . . 4 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dicval2 41136 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
10 | 9 | eleq2d 2830 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)})) |
11 | excom 2163 | . . . 4 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
12 | an12 644 | . . . . . . 7 ⊢ ((𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) | |
13 | 12 | exbii 1846 | . . . . . 6 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
14 | fvex 6933 | . . . . . . 7 ⊢ (𝑠‘𝐺) ∈ V | |
15 | opeq1 4897 | . . . . . . . . 9 ⊢ (𝑓 = (𝑠‘𝐺) → 〈𝑓, 𝑠〉 = 〈(𝑠‘𝐺), 𝑠〉) | |
16 | 15 | eqeq2d 2751 | . . . . . . . 8 ⊢ (𝑓 = (𝑠‘𝐺) → (𝑌 = 〈𝑓, 𝑠〉 ↔ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
17 | 16 | anbi1d 630 | . . . . . . 7 ⊢ (𝑓 = (𝑠‘𝐺) → ((𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
18 | 14, 17 | ceqsexv 3542 | . . . . . 6 ⊢ (∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸)) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸)) |
19 | ancom 460 | . . . . . 6 ⊢ ((𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
20 | 13, 18, 19 | 3bitri 297 | . . . . 5 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
21 | 20 | exbii 1846 | . . . 4 ⊢ (∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
22 | 11, 21 | bitri 275 | . . 3 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
23 | elopab 5546 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
24 | df-rex 3077 | . . 3 ⊢ (∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
25 | 22, 23, 24 | 3bitr4i 303 | . 2 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉) |
26 | 10, 25 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 class class class wbr 5166 {copab 5228 ‘cfv 6573 ℩crio 7403 lecple 17318 occoc 17319 Atomscatm 39219 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 DIsoCcdic 41129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-dic 41130 |
This theorem is referenced by: cdlemn11pre 41167 dihord2pre 41182 |
Copyright terms: Public domain | W3C validator |