| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval3 | Structured version Visualization version GIF version | ||
| Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| dicval.l | ⊢ ≤ = (le‘𝐾) |
| dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
| Ref | Expression |
|---|---|
| dicelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
| 5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 8 | dicval2.g | . . . 4 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dicval2 41173 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
| 10 | 9 | eleq2d 2814 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)})) |
| 11 | excom 2163 | . . . 4 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
| 12 | an12 645 | . . . . . . 7 ⊢ ((𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) | |
| 13 | 12 | exbii 1848 | . . . . . 6 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
| 14 | fvex 6871 | . . . . . . 7 ⊢ (𝑠‘𝐺) ∈ V | |
| 15 | opeq1 4837 | . . . . . . . . 9 ⊢ (𝑓 = (𝑠‘𝐺) → 〈𝑓, 𝑠〉 = 〈(𝑠‘𝐺), 𝑠〉) | |
| 16 | 15 | eqeq2d 2740 | . . . . . . . 8 ⊢ (𝑓 = (𝑠‘𝐺) → (𝑌 = 〈𝑓, 𝑠〉 ↔ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 17 | 16 | anbi1d 631 | . . . . . . 7 ⊢ (𝑓 = (𝑠‘𝐺) → ((𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
| 18 | 14, 17 | ceqsexv 3498 | . . . . . 6 ⊢ (∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸)) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸)) |
| 19 | ancom 460 | . . . . . 6 ⊢ ((𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
| 20 | 13, 18, 19 | 3bitri 297 | . . . . 5 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 21 | 20 | exbii 1848 | . . . 4 ⊢ (∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 22 | 11, 21 | bitri 275 | . . 3 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| 23 | elopab 5487 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
| 24 | df-rex 3054 | . . 3 ⊢ (∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
| 25 | 22, 23, 24 | 3bitr4i 303 | . 2 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉) |
| 26 | 10, 25 | bitrdi 287 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 〈cop 4595 class class class wbr 5107 {copab 5169 ‘cfv 6511 ℩crio 7343 lecple 17227 occoc 17228 Atomscatm 39256 LHypclh 39978 LTrncltrn 40095 TEndoctendo 40746 DIsoCcdic 41166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-dic 41167 |
| This theorem is referenced by: cdlemn11pre 41204 dihord2pre 41219 |
| Copyright terms: Public domain | W3C validator |