MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdpr Structured version   Visualization version   GIF version

Theorem dprdpr 20094
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z 𝑍 = (Cntz‘𝐺)
dmdprdpr.0 0 = (0g𝐺)
dmdprdpr.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
dmdprdpr.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
dprdpr.s = (LSSum‘𝐺)
dprdpr.1 (𝜑𝑆 ⊆ (𝑍𝑇))
dprdpr.2 (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
dprdpr (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = (𝑆 𝑇))

Proof of Theorem dprdpr
StepHypRef Expression
1 dmdprdpr.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 dmdprdpr.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 xpscf 17625 . . . 4 ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)))
41, 2, 3sylanbrc 582 . . 3 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺))
5 1n0 8544 . . . . 5 1o ≠ ∅
65necomi 3001 . . . 4 ∅ ≠ 1o
7 disjsn2 4737 . . . 4 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
86, 7mp1i 13 . . 3 (𝜑 → ({∅} ∩ {1o}) = ∅)
9 df2o3 8530 . . . . 5 2o = {∅, 1o}
10 df-pr 4651 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
119, 10eqtri 2768 . . . 4 2o = ({∅} ∪ {1o})
1211a1i 11 . . 3 (𝜑 → 2o = ({∅} ∪ {1o}))
13 dprdpr.s . . 3 = (LSSum‘𝐺)
14 dprdpr.1 . . . 4 (𝜑𝑆 ⊆ (𝑍𝑇))
15 dprdpr.2 . . . 4 (𝜑 → (𝑆𝑇) = { 0 })
16 dmdprdpr.z . . . . 5 𝑍 = (Cntz‘𝐺)
17 dmdprdpr.0 . . . . 5 0 = (0g𝐺)
1816, 17, 1, 2dmdprdpr 20093 . . . 4 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
1914, 15, 18mpbir2and 712 . . 3 (𝜑𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩})
204, 8, 12, 13, 19dprdsplit 20092 . 2 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))))
214ffnd 6748 . . . . . . 7 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o)
22 0ex 5325 . . . . . . . . 9 ∅ ∈ V
2322prid1 4787 . . . . . . . 8 ∅ ∈ {∅, 1o}
2423, 9eleqtrri 2843 . . . . . . 7 ∅ ∈ 2o
25 fnressn 7192 . . . . . . 7 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
2621, 24, 25sylancl 585 . . . . . 6 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
27 fvpr0o 17619 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
281, 27syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
2928opeq2d 4904 . . . . . . 7 (𝜑 → ⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩ = ⟨∅, 𝑆⟩)
3029sneqd 4660 . . . . . 6 (𝜑 → {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩} = {⟨∅, 𝑆⟩})
3126, 30eqtrd 2780 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, 𝑆⟩})
3231oveq2d 7464 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = (𝐺 DProd {⟨∅, 𝑆⟩}))
33 dprdsn 20080 . . . . . 6 ((∅ ∈ V ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
3422, 1, 33sylancr 586 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
3534simprd 495 . . . 4 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆)
3632, 35eqtrd 2780 . . 3 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = 𝑆)
37 1oex 8532 . . . . . . . . 9 1o ∈ V
3837prid2 4788 . . . . . . . 8 1o ∈ {∅, 1o}
3938, 9eleqtrri 2843 . . . . . . 7 1o ∈ 2o
40 fnressn 7192 . . . . . . 7 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
4121, 39, 40sylancl 585 . . . . . 6 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
42 fvpr1o 17620 . . . . . . . . 9 (𝑇 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
432, 42syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
4443opeq2d 4904 . . . . . . 7 (𝜑 → ⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩ = ⟨1o, 𝑇⟩)
4544sneqd 4660 . . . . . 6 (𝜑 → {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩} = {⟨1o, 𝑇⟩})
4641, 45eqtrd 2780 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, 𝑇⟩})
4746oveq2d 7464 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = (𝐺 DProd {⟨1o, 𝑇⟩}))
48 1on 8534 . . . . . 6 1o ∈ On
49 dprdsn 20080 . . . . . 6 ((1o ∈ On ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
5048, 2, 49sylancr 586 . . . . 5 (𝜑 → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
5150simprd 495 . . . 4 (𝜑 → (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇)
5247, 51eqtrd 2780 . . 3 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = 𝑇)
5336, 52oveq12d 7466 . 2 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑆 𝑇))
5420, 53eqtrd 2780 1 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = (𝑆 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  dom cdm 5700  cres 5702  Oncon0 6395   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1oc1o 8515  2oc2o 8516  0gc0g 17499  SubGrpcsubg 19160  Cntzccntz 19355  LSSumclsm 19676   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-dprd 20039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator