MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdpr Structured version   Visualization version   GIF version

Theorem dprdpr 19175
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z 𝑍 = (Cntz‘𝐺)
dmdprdpr.0 0 = (0g𝐺)
dmdprdpr.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
dmdprdpr.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
dprdpr.s = (LSSum‘𝐺)
dprdpr.1 (𝜑𝑆 ⊆ (𝑍𝑇))
dprdpr.2 (𝜑 → (𝑆𝑇) = { 0 })
Assertion
Ref Expression
dprdpr (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = (𝑆 𝑇))

Proof of Theorem dprdpr
StepHypRef Expression
1 dmdprdpr.s . . . 4 (𝜑𝑆 ∈ (SubGrp‘𝐺))
2 dmdprdpr.t . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
3 xpscf 16841 . . . 4 ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)))
41, 2, 3sylanbrc 585 . . 3 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺))
5 1n0 8122 . . . . 5 1o ≠ ∅
65necomi 3073 . . . 4 ∅ ≠ 1o
7 disjsn2 4651 . . . 4 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
86, 7mp1i 13 . . 3 (𝜑 → ({∅} ∩ {1o}) = ∅)
9 df2o3 8120 . . . . 5 2o = {∅, 1o}
10 df-pr 4573 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
119, 10eqtri 2847 . . . 4 2o = ({∅} ∪ {1o})
1211a1i 11 . . 3 (𝜑 → 2o = ({∅} ∪ {1o}))
13 dprdpr.s . . 3 = (LSSum‘𝐺)
14 dprdpr.1 . . . 4 (𝜑𝑆 ⊆ (𝑍𝑇))
15 dprdpr.2 . . . 4 (𝜑 → (𝑆𝑇) = { 0 })
16 dmdprdpr.z . . . . 5 𝑍 = (Cntz‘𝐺)
17 dmdprdpr.0 . . . . 5 0 = (0g𝐺)
1816, 17, 1, 2dmdprdpr 19174 . . . 4 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
1914, 15, 18mpbir2and 711 . . 3 (𝜑𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩})
204, 8, 12, 13, 19dprdsplit 19173 . 2 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))))
214ffnd 6518 . . . . . . 7 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o)
22 0ex 5214 . . . . . . . . 9 ∅ ∈ V
2322prid1 4701 . . . . . . . 8 ∅ ∈ {∅, 1o}
2423, 9eleqtrri 2915 . . . . . . 7 ∅ ∈ 2o
25 fnressn 6923 . . . . . . 7 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
2621, 24, 25sylancl 588 . . . . . 6 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
27 fvpr0o 16835 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
281, 27syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
2928opeq2d 4813 . . . . . . 7 (𝜑 → ⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩ = ⟨∅, 𝑆⟩)
3029sneqd 4582 . . . . . 6 (𝜑 → {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩} = {⟨∅, 𝑆⟩})
3126, 30eqtrd 2859 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, 𝑆⟩})
3231oveq2d 7175 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = (𝐺 DProd {⟨∅, 𝑆⟩}))
33 dprdsn 19161 . . . . . 6 ((∅ ∈ V ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
3422, 1, 33sylancr 589 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
3534simprd 498 . . . 4 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆)
3632, 35eqtrd 2859 . . 3 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = 𝑆)
37 1oex 8113 . . . . . . . . 9 1o ∈ V
3837prid2 4702 . . . . . . . 8 1o ∈ {∅, 1o}
3938, 9eleqtrri 2915 . . . . . . 7 1o ∈ 2o
40 fnressn 6923 . . . . . . 7 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
4121, 39, 40sylancl 588 . . . . . 6 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
42 fvpr1o 16836 . . . . . . . . 9 (𝑇 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
432, 42syl 17 . . . . . . . 8 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
4443opeq2d 4813 . . . . . . 7 (𝜑 → ⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩ = ⟨1o, 𝑇⟩)
4544sneqd 4582 . . . . . 6 (𝜑 → {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩} = {⟨1o, 𝑇⟩})
4641, 45eqtrd 2859 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, 𝑇⟩})
4746oveq2d 7175 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = (𝐺 DProd {⟨1o, 𝑇⟩}))
48 1on 8112 . . . . . 6 1o ∈ On
49 dprdsn 19161 . . . . . 6 ((1o ∈ On ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
5048, 2, 49sylancr 589 . . . . 5 (𝜑 → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
5150simprd 498 . . . 4 (𝜑 → (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇)
5247, 51eqtrd 2859 . . 3 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = 𝑇)
5336, 52oveq12d 7177 . 2 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑆 𝑇))
5420, 53eqtrd 2859 1 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}) = (𝑆 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  Vcvv 3497  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4570  {cpr 4572  cop 4576   class class class wbr 5069  dom cdm 5558  cres 5560  Oncon0 6194   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1oc1o 8098  2oc2o 8099  0gc0g 16716  SubGrpcsubg 18276  Cntzccntz 18448  LSSumclsm 18762   DProd cdprd 19118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-gim 18402  df-cntz 18450  df-oppg 18477  df-lsm 18764  df-cmn 18911  df-dprd 19120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator