![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumpair | Structured version Visualization version GIF version |
Description: Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumpair.1 | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
sumpair.3 | ⊢ (𝜑 → Ⅎ𝑘𝐸) |
sumupair.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sumupair.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sumupair.3 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
sumupair.4 | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
sumupair.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
sumupair.8 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
sumupair.9 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
sumpair | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumupair.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 4715 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 4630 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | prfi 9324 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
8 | elpri 4649 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} → (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) | |
9 | sumupair.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
10 | sumupair.3 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
11 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
12 | 9, 11 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 ∈ ℂ) |
13 | sumupair.9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
14 | sumupair.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
15 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐸 ∈ ℂ) |
16 | 13, 15 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
17 | 12, 16 | jaodan 954 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐶 ∈ ℂ) |
18 | 8, 17 | sylan2 591 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ) |
19 | 3, 5, 7, 18 | fsumsplit 15691 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
20 | sumpair.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
21 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
22 | sumupair.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | 20, 21, 9, 22, 10 | sumsnd 44012 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
24 | sumpair.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐸) | |
25 | sumupair.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
26 | 24, 21, 13, 25, 14 | sumsnd 44012 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
27 | 23, 26 | oveq12d 7429 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸)) |
28 | 19, 27 | eqtrd 2770 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2881 ≠ wne 2938 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 {cpr 4629 (class class class)co 7411 Fincfn 8941 ℂcc 11110 + caddc 11115 Σcsu 15636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 |
This theorem is referenced by: refsum2cnlem1 44023 |
Copyright terms: Public domain | W3C validator |