| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sumpair | Structured version Visualization version GIF version | ||
| Description: Sum of two distinct complex values. The class expression for 𝐴 and 𝐵 normally contain free variable 𝑘 to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| sumpair.1 | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
| sumpair.3 | ⊢ (𝜑 → Ⅎ𝑘𝐸) |
| sumupair.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sumupair.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sumupair.3 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| sumupair.4 | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| sumupair.5 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| sumupair.8 | ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
| sumupair.9 | ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| sumpair | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumupair.5 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | disjsn2 4684 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 4 | df-pr 4600 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
| 6 | prfi 9292 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| 8 | elpri 4621 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} → (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) | |
| 9 | sumupair.8 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) | |
| 10 | sumupair.3 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
| 12 | 9, 11 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 ∈ ℂ) |
| 13 | sumupair.9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) | |
| 14 | sumupair.4 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐸 ∈ ℂ) |
| 16 | 13, 15 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
| 17 | 12, 16 | jaodan 959 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐶 ∈ ℂ) |
| 18 | 8, 17 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ) |
| 19 | 3, 5, 7, 18 | fsumsplit 15714 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
| 20 | sumpair.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
| 21 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 22 | sumupair.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 23 | 20, 21, 9, 22, 10 | sumsnd 44992 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷) |
| 24 | sumpair.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑘𝐸) | |
| 25 | sumupair.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 26 | 24, 21, 13, 25, 14 | sumsnd 44992 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸) |
| 27 | 23, 26 | oveq12d 7412 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸)) |
| 28 | 19, 27 | eqtrd 2765 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ≠ wne 2927 ∪ cun 3920 ∩ cin 3921 ∅c0 4304 {csn 4597 {cpr 4599 (class class class)co 7394 Fincfn 8922 ℂcc 11084 + caddc 11089 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-seq 13977 df-exp 14037 df-hash 14306 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: refsum2cnlem1 45003 |
| Copyright terms: Public domain | W3C validator |