| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prodpr | Structured version Visualization version GIF version | ||
| Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
| Ref | Expression |
|---|---|
| prodpr.1 | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
| prodpr.2 | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
| prodpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| prodpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| prodpr.e | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
| prodpr.f | ⊢ (𝜑 → 𝐹 ∈ ℂ) |
| prodpr.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| prodpr | ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | disjsn2 4693 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 4 | df-pr 4609 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
| 6 | prfi 9340 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| 8 | vex 3468 | . . . . 5 ⊢ 𝑘 ∈ V | |
| 9 | 8 | elpr 4631 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) |
| 10 | prodpr.1 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 = 𝐸) |
| 12 | prodpr.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐸 ∈ ℂ) |
| 14 | 11, 13 | eqeltrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
| 15 | prodpr.2 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 = 𝐹) |
| 17 | prodpr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ℂ) | |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐹 ∈ ℂ) |
| 19 | 16, 18 | eqeltrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
| 20 | 14, 19 | jaodan 959 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐷 ∈ ℂ) |
| 21 | 9, 20 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐷 ∈ ℂ) |
| 22 | 3, 5, 7, 21 | fprodsplit 15987 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷)) |
| 23 | prodpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 24 | 10 | prodsn 15983 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐸 ∈ ℂ) → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
| 25 | 23, 12, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
| 26 | prodpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 27 | 15 | prodsn 15983 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐹 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
| 28 | 26, 17, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
| 29 | 25, 28 | oveq12d 7428 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷) = (𝐸 · 𝐹)) |
| 30 | 22, 29 | eqtrd 2771 | 1 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 {cpr 4608 (class class class)co 7410 Fincfn 8964 ℂcc 11132 · cmul 11139 ∏cprod 15924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-prod 15925 |
| This theorem is referenced by: prodtp 32811 |
| Copyright terms: Public domain | W3C validator |