![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prodpr | Structured version Visualization version GIF version |
Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
prodpr.1 | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
prodpr.2 | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
prodpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
prodpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
prodpr.e | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
prodpr.f | ⊢ (𝜑 → 𝐹 ∈ ℂ) |
prodpr.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
prodpr | ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 4737 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 4651 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | prfi 9391 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
8 | vex 3492 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 8 | elpr 4672 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) |
10 | prodpr.1 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
11 | 10 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 = 𝐸) |
12 | prodpr.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐸 ∈ ℂ) |
14 | 11, 13 | eqeltrd 2844 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
15 | prodpr.2 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 = 𝐹) |
17 | prodpr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ℂ) | |
18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐹 ∈ ℂ) |
19 | 16, 18 | eqeltrd 2844 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
20 | 14, 19 | jaodan 958 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐷 ∈ ℂ) |
21 | 9, 20 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐷 ∈ ℂ) |
22 | 3, 5, 7, 21 | fprodsplit 16014 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷)) |
23 | prodpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
24 | 10 | prodsn 16010 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐸 ∈ ℂ) → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
25 | 23, 12, 24 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
26 | prodpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
27 | 15 | prodsn 16010 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐹 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
28 | 26, 17, 27 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
29 | 25, 28 | oveq12d 7466 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷) = (𝐸 · 𝐹)) |
30 | 22, 29 | eqtrd 2780 | 1 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 {cpr 4650 (class class class)co 7448 Fincfn 9003 ℂcc 11182 · cmul 11189 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 |
This theorem is referenced by: prodtp 32831 |
Copyright terms: Public domain | W3C validator |