Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prodpr | Structured version Visualization version GIF version |
Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.) |
Ref | Expression |
---|---|
prodpr.1 | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
prodpr.2 | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
prodpr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
prodpr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
prodpr.e | ⊢ (𝜑 → 𝐸 ∈ ℂ) |
prodpr.f | ⊢ (𝜑 → 𝐹 ∈ ℂ) |
prodpr.3 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
prodpr | ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodpr.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | disjsn2 4664 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
4 | df-pr 4580 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})) |
6 | prfi 9191 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
8 | vex 3446 | . . . . 5 ⊢ 𝑘 ∈ V | |
9 | 8 | elpr 4600 | . . . 4 ⊢ (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) |
10 | prodpr.1 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
11 | 10 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 = 𝐸) |
12 | prodpr.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℂ) | |
13 | 12 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐸 ∈ ℂ) |
14 | 11, 13 | eqeltrd 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ) |
15 | prodpr.2 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
16 | 15 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 = 𝐹) |
17 | prodpr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ ℂ) | |
18 | 17 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐹 ∈ ℂ) |
19 | 16, 18 | eqeltrd 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
20 | 14, 19 | jaodan 956 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 = 𝐴 ∨ 𝑘 = 𝐵)) → 𝐷 ∈ ℂ) |
21 | 9, 20 | sylan2b 595 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐷 ∈ ℂ) |
22 | 3, 5, 7, 21 | fprodsplit 15775 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷)) |
23 | prodpr.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
24 | 10 | prodsn 15771 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐸 ∈ ℂ) → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
25 | 23, 12, 24 | syl2anc 585 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸) |
26 | prodpr.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
27 | 15 | prodsn 15771 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐹 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
28 | 26, 17, 27 | syl2anc 585 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹) |
29 | 25, 28 | oveq12d 7359 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷) = (𝐸 · 𝐹)) |
30 | 22, 29 | eqtrd 2777 | 1 ⊢ (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∪ cun 3899 ∩ cin 3900 ∅c0 4273 {csn 4577 {cpr 4579 (class class class)co 7341 Fincfn 8808 ℂcc 10974 · cmul 10981 ∏cprod 15714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-prod 15715 |
This theorem is referenced by: prodtp 31426 |
Copyright terms: Public domain | W3C validator |