Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodpr Structured version   Visualization version   GIF version

Theorem prodpr 32810
Description: A product over a pair is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
Assertion
Ref Expression
prodpr (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodpr
StepHypRef Expression
1 prodpr.3 . . . 4 (𝜑𝐴𝐵)
2 disjsn2 4693 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
31, 2syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
4 df-pr 4609 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
6 prfi 9340 . . . 4 {𝐴, 𝐵} ∈ Fin
76a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
8 vex 3468 . . . . 5 𝑘 ∈ V
98elpr 4631 . . . 4 (𝑘 ∈ {𝐴, 𝐵} ↔ (𝑘 = 𝐴𝑘 = 𝐵))
10 prodpr.1 . . . . . . 7 (𝑘 = 𝐴𝐷 = 𝐸)
1110adantl 481 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
12 prodpr.e . . . . . . 7 (𝜑𝐸 ∈ ℂ)
1312adantr 480 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1411, 13eqeltrd 2835 . . . . 5 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
15 prodpr.2 . . . . . . 7 (𝑘 = 𝐵𝐷 = 𝐹)
1615adantl 481 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
17 prodpr.f . . . . . . 7 (𝜑𝐹 ∈ ℂ)
1817adantr 480 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
1916, 18eqeltrd 2835 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2014, 19jaodan 959 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵)) → 𝐷 ∈ ℂ)
219, 20sylan2b 594 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐷 ∈ ℂ)
223, 5, 7, 21fprodsplit 15987 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷))
23 prodpr.a . . . 4 (𝜑𝐴𝑉)
2410prodsn 15983 . . . 4 ((𝐴𝑉𝐸 ∈ ℂ) → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸)
2523, 12, 24syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴}𝐷 = 𝐸)
26 prodpr.b . . . 4 (𝜑𝐵𝑊)
2715prodsn 15983 . . . 4 ((𝐵𝑊𝐹 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹)
2826, 17, 27syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐷 = 𝐹)
2925, 28oveq12d 7428 . 2 (𝜑 → (∏𝑘 ∈ {𝐴}𝐷 · ∏𝑘 ∈ {𝐵}𝐷) = (𝐸 · 𝐹))
3022, 29eqtrd 2771 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  cun 3929  cin 3930  c0 4313  {csn 4606  {cpr 4608  (class class class)co 7410  Fincfn 8964  cc 11132   · cmul 11139  cprod 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925
This theorem is referenced by:  prodtp  32811
  Copyright terms: Public domain W3C validator