MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdpr Structured version   Visualization version   GIF version

Theorem dmdprdpr 19173
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z 𝑍 = (Cntz‘𝐺)
dmdprdpr.0 0 = (0g𝐺)
dmdprdpr.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
dmdprdpr.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdpr (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))

Proof of Theorem dmdprdpr
StepHypRef Expression
1 0ex 5213 . . . . . 6 ∅ ∈ V
2 dmdprdpr.s . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3 dprdsn 19160 . . . . . 6 ((∅ ∈ V ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
41, 2, 3sylancr 589 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
54simpld 497 . . . 4 (𝜑𝐺dom DProd {⟨∅, 𝑆⟩})
6 dmdprdpr.t . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 xpscf 16840 . . . . . . . 8 ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)))
82, 6, 7sylanbrc 585 . . . . . . 7 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺))
98ffnd 6517 . . . . . 6 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o)
101prid1 4700 . . . . . . 7 ∅ ∈ {∅, 1o}
11 df2o3 8119 . . . . . . 7 2o = {∅, 1o}
1210, 11eleqtrri 2914 . . . . . 6 ∅ ∈ 2o
13 fnressn 6922 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
149, 12, 13sylancl 588 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
15 fvpr0o 16834 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
162, 15syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
1716opeq2d 4812 . . . . . 6 (𝜑 → ⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩ = ⟨∅, 𝑆⟩)
1817sneqd 4581 . . . . 5 (𝜑 → {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩} = {⟨∅, 𝑆⟩})
1914, 18eqtrd 2858 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, 𝑆⟩})
205, 19breqtrrd 5096 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}))
21 1on 8111 . . . . . 6 1o ∈ On
22 dprdsn 19160 . . . . . 6 ((1o ∈ On ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2321, 6, 22sylancr 589 . . . . 5 (𝜑 → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2423simpld 497 . . . 4 (𝜑𝐺dom DProd {⟨1o, 𝑇⟩})
25 1oex 8112 . . . . . . . 8 1o ∈ V
2625prid2 4701 . . . . . . 7 1o ∈ {∅, 1o}
2726, 11eleqtrri 2914 . . . . . 6 1o ∈ 2o
28 fnressn 6922 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
299, 27, 28sylancl 588 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
30 fvpr1o 16835 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
316, 30syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
3231opeq2d 4812 . . . . . 6 (𝜑 → ⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩ = ⟨1o, 𝑇⟩)
3332sneqd 4581 . . . . 5 (𝜑 → {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩} = {⟨1o, 𝑇⟩})
3429, 33eqtrd 2858 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, 𝑇⟩})
3524, 34breqtrrd 5096 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))
36 1n0 8121 . . . . . . . . 9 1o ≠ ∅
3736necomi 3072 . . . . . . . 8 ∅ ≠ 1o
38 disjsn2 4650 . . . . . . . 8 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
3937, 38mp1i 13 . . . . . . 7 (𝜑 → ({∅} ∩ {1o}) = ∅)
40 df-pr 4572 . . . . . . . . 9 {∅, 1o} = ({∅} ∪ {1o})
4111, 40eqtri 2846 . . . . . . . 8 2o = ({∅} ∪ {1o})
4241a1i 11 . . . . . . 7 (𝜑 → 2o = ({∅} ∪ {1o}))
43 dmdprdpr.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
44 dmdprdpr.0 . . . . . . 7 0 = (0g𝐺)
458, 39, 42, 43, 44dmdprdsplit 19171 . . . . . 6 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
46 3anass 1091 . . . . . 6 (((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4745, 46syl6bb 289 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
4847baibd 542 . . . 4 ((𝜑 ∧ (𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4948ex 415 . . 3 (𝜑 → ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
5020, 35, 49mp2and 697 . 2 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
5119oveq2d 7174 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = (𝐺 DProd {⟨∅, 𝑆⟩}))
524simprd 498 . . . . 5 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆)
5351, 52eqtrd 2858 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = 𝑆)
5434oveq2d 7174 . . . . . 6 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = (𝐺 DProd {⟨1o, 𝑇⟩}))
5523simprd 498 . . . . . 6 (𝜑 → (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇)
5654, 55eqtrd 2858 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = 𝑇)
5756fveq2d 6676 . . . 4 (𝜑 → (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑍𝑇))
5853, 57sseq12d 4002 . . 3 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ↔ 𝑆 ⊆ (𝑍𝑇)))
5953, 56ineq12d 4192 . . . 4 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑆𝑇))
6059eqeq1d 2825 . . 3 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 } ↔ (𝑆𝑇) = { 0 }))
6158, 60anbi12d 632 . 2 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
6250, 61bitrd 281 1 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  {cpr 4571  cop 4575   class class class wbr 5068  dom cdm 5557  cres 5559  Oncon0 6193   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1oc1o 8097  2oc2o 8098  0gc0g 16715  SubGrpcsubg 18275  Cntzccntz 18447   DProd cdprd 19117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-gim 18401  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-dprd 19119
This theorem is referenced by:  dprdpr  19174
  Copyright terms: Public domain W3C validator