MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdpr Structured version   Visualization version   GIF version

Theorem dmdprdpr 20084
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z 𝑍 = (Cntz‘𝐺)
dmdprdpr.0 0 = (0g𝐺)
dmdprdpr.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
dmdprdpr.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdpr (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))

Proof of Theorem dmdprdpr
StepHypRef Expression
1 0ex 5313 . . . . . 6 ∅ ∈ V
2 dmdprdpr.s . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3 dprdsn 20071 . . . . . 6 ((∅ ∈ V ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
41, 2, 3sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
54simpld 494 . . . 4 (𝜑𝐺dom DProd {⟨∅, 𝑆⟩})
6 dmdprdpr.t . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 xpscf 17612 . . . . . . . 8 ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)))
82, 6, 7sylanbrc 583 . . . . . . 7 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺))
98ffnd 6738 . . . . . 6 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o)
101prid1 4767 . . . . . . 7 ∅ ∈ {∅, 1o}
11 df2o3 8513 . . . . . . 7 2o = {∅, 1o}
1210, 11eleqtrri 2838 . . . . . 6 ∅ ∈ 2o
13 fnressn 7178 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
149, 12, 13sylancl 586 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
15 fvpr0o 17606 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
162, 15syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
1716opeq2d 4885 . . . . . 6 (𝜑 → ⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩ = ⟨∅, 𝑆⟩)
1817sneqd 4643 . . . . 5 (𝜑 → {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩} = {⟨∅, 𝑆⟩})
1914, 18eqtrd 2775 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, 𝑆⟩})
205, 19breqtrrd 5176 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}))
21 1on 8517 . . . . . 6 1o ∈ On
22 dprdsn 20071 . . . . . 6 ((1o ∈ On ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2321, 6, 22sylancr 587 . . . . 5 (𝜑 → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2423simpld 494 . . . 4 (𝜑𝐺dom DProd {⟨1o, 𝑇⟩})
25 1oex 8515 . . . . . . . 8 1o ∈ V
2625prid2 4768 . . . . . . 7 1o ∈ {∅, 1o}
2726, 11eleqtrri 2838 . . . . . 6 1o ∈ 2o
28 fnressn 7178 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
299, 27, 28sylancl 586 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
30 fvpr1o 17607 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
316, 30syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
3231opeq2d 4885 . . . . . 6 (𝜑 → ⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩ = ⟨1o, 𝑇⟩)
3332sneqd 4643 . . . . 5 (𝜑 → {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩} = {⟨1o, 𝑇⟩})
3429, 33eqtrd 2775 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, 𝑇⟩})
3524, 34breqtrrd 5176 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))
36 1n0 8525 . . . . . . . . 9 1o ≠ ∅
3736necomi 2993 . . . . . . . 8 ∅ ≠ 1o
38 disjsn2 4717 . . . . . . . 8 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
3937, 38mp1i 13 . . . . . . 7 (𝜑 → ({∅} ∩ {1o}) = ∅)
40 df-pr 4634 . . . . . . . . 9 {∅, 1o} = ({∅} ∪ {1o})
4111, 40eqtri 2763 . . . . . . . 8 2o = ({∅} ∪ {1o})
4241a1i 11 . . . . . . 7 (𝜑 → 2o = ({∅} ∪ {1o}))
43 dmdprdpr.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
44 dmdprdpr.0 . . . . . . 7 0 = (0g𝐺)
458, 39, 42, 43, 44dmdprdsplit 20082 . . . . . 6 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
46 3anass 1094 . . . . . 6 (((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4745, 46bitrdi 287 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
4847baibd 539 . . . 4 ((𝜑 ∧ (𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4948ex 412 . . 3 (𝜑 → ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
5020, 35, 49mp2and 699 . 2 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
5119oveq2d 7447 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = (𝐺 DProd {⟨∅, 𝑆⟩}))
524simprd 495 . . . . 5 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆)
5351, 52eqtrd 2775 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = 𝑆)
5434oveq2d 7447 . . . . . 6 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = (𝐺 DProd {⟨1o, 𝑇⟩}))
5523simprd 495 . . . . . 6 (𝜑 → (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇)
5654, 55eqtrd 2775 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = 𝑇)
5756fveq2d 6911 . . . 4 (𝜑 → (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑍𝑇))
5853, 57sseq12d 4029 . . 3 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ↔ 𝑆 ⊆ (𝑍𝑇)))
5953, 56ineq12d 4229 . . . 4 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑆𝑇))
6059eqeq1d 2737 . . 3 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 } ↔ (𝑆𝑇) = { 0 }))
6158, 60anbi12d 632 . 2 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
6250, 61bitrd 279 1 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  {cpr 4633  cop 4637   class class class wbr 5148  dom cdm 5689  cres 5691  Oncon0 6386   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1oc1o 8498  2oc2o 8499  0gc0g 17486  SubGrpcsubg 19151  Cntzccntz 19346   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-gim 19290  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-dprd 20030
This theorem is referenced by:  dprdpr  20085
  Copyright terms: Public domain W3C validator