Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djafvalN Structured version   Visualization version   GIF version

Theorem djafvalN 37721
Description: Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djafvalN ((𝐾𝑉𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝑇,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem djafvalN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 djaval.j . . 3 𝐽 = ((vA‘𝐾)‘𝑊)
2 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32djaffvalN 37720 . . . 4 (𝐾𝑉 → (vA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
43fveq1d 6501 . . 3 (𝐾𝑉 → ((vA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
51, 4syl5eq 2826 . 2 (𝐾𝑉𝐽 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
6 fveq2 6499 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
7 djaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
86, 7syl6eqr 2832 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
98pweqd 4427 . . . 4 (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇)
10 fveq2 6499 . . . . . 6 (𝑤 = 𝑊 → ((ocA‘𝐾)‘𝑤) = ((ocA‘𝐾)‘𝑊))
11 djaval.n . . . . . 6 = ((ocA‘𝐾)‘𝑊)
1210, 11syl6eqr 2832 . . . . 5 (𝑤 = 𝑊 → ((ocA‘𝐾)‘𝑤) = )
1312fveq1d 6501 . . . . . 6 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘𝑥) = ( 𝑥))
1412fveq1d 6501 . . . . . 6 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘𝑦) = ( 𝑦))
1513, 14ineq12d 4077 . . . . 5 (𝑤 = 𝑊 → ((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)) = (( 𝑥) ∩ ( 𝑦)))
1612, 15fveq12d 6506 . . . 4 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))) = ( ‘(( 𝑥) ∩ ( 𝑦))))
179, 9, 16mpoeq123dv 7047 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
18 eqid 2778 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))
197fvexi 6513 . . . . 5 𝑇 ∈ V
2019pwex 5134 . . . 4 𝒫 𝑇 ∈ V
2120, 20mpoex 7585 . . 3 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) ∈ V
2217, 18, 21fvmpt 6595 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
235, 22sylan9eq 2834 1 ((𝐾𝑉𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  cin 3828  𝒫 cpw 4422  cmpt 5008  cfv 6188  cmpo 6978  LHypclh 36571  LTrncltrn 36688  DIsoAcdia 37615  ocAcocaN 37706  vAcdjaN 37718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-djaN 37719
This theorem is referenced by:  djavalN  37722
  Copyright terms: Public domain W3C validator