Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djafvalN Structured version   Visualization version   GIF version

Theorem djafvalN 41136
Description: Subspace join for DVecA partial vector space. TODO: take out hypothesis .i, no longer used. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djaval.h 𝐻 = (LHyp‘𝐾)
djaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djaval.n = ((ocA‘𝐾)‘𝑊)
djaval.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djafvalN ((𝐾𝑉𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝑇,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝐽(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem djafvalN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 djaval.j . . 3 𝐽 = ((vA‘𝐾)‘𝑊)
2 djaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32djaffvalN 41135 . . . 4 (𝐾𝑉 → (vA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))))
43fveq1d 6908 . . 3 (𝐾𝑉 → ((vA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
51, 4eqtrid 2789 . 2 (𝐾𝑉𝐽 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
6 fveq2 6906 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
7 djaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
86, 7eqtr4di 2795 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
98pweqd 4617 . . . 4 (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇)
10 fveq2 6906 . . . . . 6 (𝑤 = 𝑊 → ((ocA‘𝐾)‘𝑤) = ((ocA‘𝐾)‘𝑊))
11 djaval.n . . . . . 6 = ((ocA‘𝐾)‘𝑊)
1210, 11eqtr4di 2795 . . . . 5 (𝑤 = 𝑊 → ((ocA‘𝐾)‘𝑤) = )
1312fveq1d 6908 . . . . . 6 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘𝑥) = ( 𝑥))
1412fveq1d 6908 . . . . . 6 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘𝑦) = ( 𝑦))
1513, 14ineq12d 4221 . . . . 5 (𝑤 = 𝑊 → ((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)) = (( 𝑥) ∩ ( 𝑦)))
1612, 15fveq12d 6913 . . . 4 (𝑤 = 𝑊 → (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))) = ( ‘(( 𝑥) ∩ ( 𝑦))))
179, 9, 16mpoeq123dv 7508 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
18 eqid 2737 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))
197fvexi 6920 . . . . 5 𝑇 ∈ V
2019pwex 5380 . . . 4 𝒫 𝑇 ∈ V
2120, 20mpoex 8104 . . 3 (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) ∈ V
2217, 18, 21fvmpt 7016 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((ocA‘𝐾)‘𝑤)‘((((ocA‘𝐾)‘𝑤)‘𝑥) ∩ (((ocA‘𝐾)‘𝑤)‘𝑦)))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
235, 22sylan9eq 2797 1 ((𝐾𝑉𝑊𝐻) → 𝐽 = (𝑥 ∈ 𝒫 𝑇, 𝑦 ∈ 𝒫 𝑇 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  𝒫 cpw 4600  cmpt 5225  cfv 6561  cmpo 7433  LHypclh 39986  LTrncltrn 40103  DIsoAcdia 41030  ocAcocaN 41121  vAcdjaN 41133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-djaN 41134
This theorem is referenced by:  djavalN  41137
  Copyright terms: Public domain W3C validator