Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhfval Structured version   Visualization version   GIF version

Theorem djhfval 41391
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHyp‘𝐾)
djhval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
djhval.v 𝑉 = (Base‘𝑈)
djhval.o = ((ocH‘𝐾)‘𝑊)
djhval.j = ((joinH‘𝐾)‘𝑊)
Assertion
Ref Expression
djhfval ((𝐾𝑋𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem djhfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 djhval.j . . 3 = ((joinH‘𝐾)‘𝑊)
2 djhval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32djhffval 41390 . . . 4 (𝐾𝑋 → (joinH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))))
43fveq1d 6860 . . 3 (𝐾𝑋 → ((joinH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
51, 4eqtrid 2776 . 2 (𝐾𝑋 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊))
6 2fveq3 6863 . . . . . 6 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑊)))
7 djhval.v . . . . . . 7 𝑉 = (Base‘𝑈)
8 djhval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
98fveq2i 6861 . . . . . . 7 (Base‘𝑈) = (Base‘((DVecH‘𝐾)‘𝑊))
107, 9eqtri 2752 . . . . . 6 𝑉 = (Base‘((DVecH‘𝐾)‘𝑊))
116, 10eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉)
1211pweqd 4580 . . . 4 (𝑤 = 𝑊 → 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) = 𝒫 𝑉)
13 fveq2 6858 . . . . . 6 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
14 djhval.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
1513, 14eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = )
1615fveq1d 6860 . . . . . 6 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘𝑥) = ( 𝑥))
1715fveq1d 6860 . . . . . 6 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘𝑦) = ( 𝑦))
1816, 17ineq12d 4184 . . . . 5 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)) = (( 𝑥) ∩ ( 𝑦)))
1915, 18fveq12d 6865 . . . 4 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))) = ( ‘(( 𝑥) ∩ ( 𝑦))))
2012, 12, 19mpoeq123dv 7464 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
21 eqid 2729 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))
227fvexi 6872 . . . . 5 𝑉 ∈ V
2322pwex 5335 . . . 4 𝒫 𝑉 ∈ V
2423, 23mpoex 8058 . . 3 (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))) ∈ V
2520, 21, 24fvmpt 6968 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
265, 25sylan9eq 2784 1 ((𝐾𝑋𝑊𝐻) → = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ‘(( 𝑥) ∩ ( 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  𝒫 cpw 4563  cmpt 5188  cfv 6511  cmpo 7389  Basecbs 17179  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341  joinHcdjh 41388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-djh 41389
This theorem is referenced by:  djhval  41392
  Copyright terms: Public domain W3C validator