Step | Hyp | Ref
| Expression |
1 | | djhval.j |
. . 3
⊢ ∨ =
((joinH‘𝐾)‘𝑊) |
2 | | djhval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
3 | 2 | djhffval 39452 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (joinH‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))) |
4 | 3 | fveq1d 6806 |
. . 3
⊢ (𝐾 ∈ 𝑋 → ((joinH‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊)) |
5 | 1, 4 | eqtrid 2788 |
. 2
⊢ (𝐾 ∈ 𝑋 → ∨ = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊)) |
6 | | 2fveq3 6809 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑊))) |
7 | | djhval.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑈) |
8 | | djhval.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
9 | 8 | fveq2i 6807 |
. . . . . . 7
⊢
(Base‘𝑈) =
(Base‘((DVecH‘𝐾)‘𝑊)) |
10 | 7, 9 | eqtri 2764 |
. . . . . 6
⊢ 𝑉 =
(Base‘((DVecH‘𝐾)‘𝑊)) |
11 | 6, 10 | eqtr4di 2794 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉) |
12 | 11 | pweqd 4556 |
. . . 4
⊢ (𝑤 = 𝑊 → 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) = 𝒫 𝑉) |
13 | | fveq2 6804 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊)) |
14 | | djhval.o |
. . . . . 6
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
15 | 13, 14 | eqtr4di 2794 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ⊥ ) |
16 | 15 | fveq1d 6806 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘𝑥) = ( ⊥ ‘𝑥)) |
17 | 15 | fveq1d 6806 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘𝑦) = ( ⊥ ‘𝑦)) |
18 | 16, 17 | ineq12d 4153 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)) = (( ⊥ ‘𝑥) ∩ ( ⊥ ‘𝑦))) |
19 | 15, 18 | fveq12d 6811 |
. . . 4
⊢ (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))) = ( ⊥ ‘(( ⊥
‘𝑥) ∩ ( ⊥
‘𝑦)))) |
20 | 12, 12, 19 | mpoeq123dv 7382 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ⊥ ‘(( ⊥
‘𝑥) ∩ ( ⊥
‘𝑦))))) |
21 | | eqid 2736 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦))))) |
22 | 7 | fvexi 6818 |
. . . . 5
⊢ 𝑉 ∈ V |
23 | 22 | pwex 5312 |
. . . 4
⊢ 𝒫
𝑉 ∈ V |
24 | 23, 23 | mpoex 7952 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ⊥ ‘(( ⊥
‘𝑥) ∩ ( ⊥
‘𝑦)))) ∈
V |
25 | 20, 21, 24 | fvmpt 6907 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((ocH‘𝐾)‘𝑤)‘((((ocH‘𝐾)‘𝑤)‘𝑥) ∩ (((ocH‘𝐾)‘𝑤)‘𝑦)))))‘𝑊) = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ⊥ ‘(( ⊥
‘𝑥) ∩ ( ⊥
‘𝑦))))) |
26 | 5, 25 | sylan9eq 2796 |
1
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → ∨ = (𝑥 ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( ⊥ ‘(( ⊥
‘𝑥) ∩ ( ⊥
‘𝑦))))) |