Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djhfval Structured version   Visualization version   GIF version

Theorem djhfval 40781
Description: Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.)
Hypotheses
Ref Expression
djhval.h 𝐻 = (LHypβ€˜πΎ)
djhval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
djhval.v 𝑉 = (Baseβ€˜π‘ˆ)
djhval.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
djhval.j ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
djhfval ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ ∨ = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝑦,𝐾   π‘₯,𝑉,𝑦   π‘₯,π‘Š,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   𝐻(π‘₯,𝑦)   ∨ (π‘₯,𝑦)   βŠ₯ (π‘₯,𝑦)   𝑋(π‘₯,𝑦)

Proof of Theorem djhfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 djhval.j . . 3 ∨ = ((joinHβ€˜πΎ)β€˜π‘Š)
2 djhval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
32djhffval 40780 . . . 4 (𝐾 ∈ 𝑋 β†’ (joinHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦))))))
43fveq1d 6887 . . 3 (𝐾 ∈ 𝑋 β†’ ((joinHβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))))β€˜π‘Š))
51, 4eqtrid 2778 . 2 (𝐾 ∈ 𝑋 β†’ ∨ = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))))β€˜π‘Š))
6 2fveq3 6890 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘Š)))
7 djhval.v . . . . . . 7 𝑉 = (Baseβ€˜π‘ˆ)
8 djhval.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
98fveq2i 6888 . . . . . . 7 (Baseβ€˜π‘ˆ) = (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘Š))
107, 9eqtri 2754 . . . . . 6 𝑉 = (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘Š))
116, 10eqtr4di 2784 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝑉)
1211pweqd 4614 . . . 4 (𝑀 = π‘Š β†’ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝒫 𝑉)
13 fveq2 6885 . . . . . 6 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = ((ocHβ€˜πΎ)β€˜π‘Š))
14 djhval.o . . . . . 6 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
1513, 14eqtr4di 2784 . . . . 5 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = βŠ₯ )
1615fveq1d 6887 . . . . . 6 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) = ( βŠ₯ β€˜π‘₯))
1715fveq1d 6887 . . . . . 6 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦) = ( βŠ₯ β€˜π‘¦))
1816, 17ineq12d 4208 . . . . 5 (𝑀 = π‘Š β†’ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)) = (( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))
1915, 18fveq12d 6892 . . . 4 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦))) = ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦))))
2012, 12, 19mpoeq123dv 7480 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))) = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
21 eqid 2726 . . 3 (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦))))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))))
227fvexi 6899 . . . . 5 𝑉 ∈ V
2322pwex 5371 . . . 4 𝒫 𝑉 ∈ V
2423, 23mpoex 8065 . . 3 (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))) ∈ V
2520, 21, 24fvmpt 6992 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)), 𝑦 ∈ 𝒫 (Baseβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ↦ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘₯) ∩ (((ocHβ€˜πΎ)β€˜π‘€)β€˜π‘¦)))))β€˜π‘Š) = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
265, 25sylan9eq 2786 1 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ ∨ = (π‘₯ ∈ 𝒫 𝑉, 𝑦 ∈ 𝒫 𝑉 ↦ ( βŠ₯ β€˜(( βŠ₯ β€˜π‘₯) ∩ ( βŠ₯ β€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   ∩ cin 3942  π’« cpw 4597   ↦ cmpt 5224  β€˜cfv 6537   ∈ cmpo 7407  Basecbs 17153  LHypclh 39368  DVecHcdvh 40462  ocHcoch 40731  joinHcdjh 40778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-djh 40779
This theorem is referenced by:  djhval  40782
  Copyright terms: Public domain W3C validator