MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmuldm Structured version   Visualization version   GIF version

Theorem mavmuldm 22465
Description: The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵m (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵m 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
Assertion
Ref Expression
mavmuldm ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))

Proof of Theorem mavmuldm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mavmuldm.t . . . 4 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mavmuldm.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2731 . . . 4 (.r𝑅) = (.r𝑅)
4 simp1 1136 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑅𝑉)
5 simp2 1137 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑀 ∈ Fin)
6 simp3 1138 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 22457 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → · = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
87dmeqd 5844 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
9 mptexg 7155 . . . . . 6 (𝑀 ∈ Fin → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1093ad2ant2 1134 . . . . 5 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1110a1d 25 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝑥 ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑦 ∈ (𝐵m 𝑁)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V))
1211ralrimivv 3173 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
13 eqid 2731 . . . 4 (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))))
1413dmmpoga 8005 . . 3 (∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
1512, 14syl 17 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
16 mavmuldm.c . . . . 5 𝐶 = (𝐵m (𝑀 × 𝑁))
1716eqcomi 2740 . . . 4 (𝐵m (𝑀 × 𝑁)) = 𝐶
1817a1i 11 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m (𝑀 × 𝑁)) = 𝐶)
19 mavmuldm.d . . . . 5 𝐷 = (𝐵m 𝑁)
2019a1i 11 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝐷 = (𝐵m 𝑁))
2120eqcomd 2737 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m 𝑁) = 𝐷)
2218, 21xpeq12d 5645 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)) = (𝐶 × 𝐷))
238, 15, 223eqtrd 2770 1 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cop 4579  cmpt 5170   × cxp 5612  dom cdm 5614  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  Basecbs 17120  .rcmulr 17162   Σg cgsu 17344   maVecMul cmvmul 22455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-mvmul 22456
This theorem is referenced by:  mavmulsolcl  22466
  Copyright terms: Public domain W3C validator