| Step | Hyp | Ref
| Expression |
| 1 | | mavmuldm.t |
. . . 4
⊢ · =
(𝑅 maVecMul 〈𝑀, 𝑁〉) |
| 2 | | mavmuldm.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | simp1 1137 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑅 ∈ 𝑉) |
| 5 | | simp2 1138 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑀 ∈ Fin) |
| 6 | | simp3 1139 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) |
| 7 | 1, 2, 3, 4, 5, 6 | mvmulfval 22548 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → · = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))))) |
| 8 | 7 | dmeqd 5916 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = dom (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))))) |
| 9 | | mptexg 7241 |
. . . . . 6
⊢ (𝑀 ∈ Fin → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))) ∈ V) |
| 10 | 9 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))) ∈ V) |
| 11 | 10 | a1d 25 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)) ∧ 𝑦 ∈ (𝐵 ↑m 𝑁)) → (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))) ∈ V)) |
| 12 | 11 | ralrimivv 3200 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵 ↑m 𝑁)(𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))) ∈ V) |
| 13 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗)))))) = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗)))))) |
| 14 | 13 | dmmpoga 8098 |
. . 3
⊢
(∀𝑥 ∈
(𝐵 ↑m
(𝑀 × 𝑁))∀𝑦 ∈ (𝐵 ↑m 𝑁)(𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗))))) ∈ V → dom (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗)))))) = ((𝐵 ↑m (𝑀 × 𝑁)) × (𝐵 ↑m 𝑁))) |
| 15 | 12, 14 | syl 17 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m 𝑁) ↦ (𝑖 ∈ 𝑀 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗)(.r‘𝑅)(𝑦‘𝑗)))))) = ((𝐵 ↑m (𝑀 × 𝑁)) × (𝐵 ↑m 𝑁))) |
| 16 | | mavmuldm.c |
. . . . 5
⊢ 𝐶 = (𝐵 ↑m (𝑀 × 𝑁)) |
| 17 | 16 | eqcomi 2746 |
. . . 4
⊢ (𝐵 ↑m (𝑀 × 𝑁)) = 𝐶 |
| 18 | 17 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵 ↑m (𝑀 × 𝑁)) = 𝐶) |
| 19 | | mavmuldm.d |
. . . . 5
⊢ 𝐷 = (𝐵 ↑m 𝑁) |
| 20 | 19 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝐷 = (𝐵 ↑m 𝑁)) |
| 21 | 20 | eqcomd 2743 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵 ↑m 𝑁) = 𝐷) |
| 22 | 18, 21 | xpeq12d 5716 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝐵 ↑m (𝑀 × 𝑁)) × (𝐵 ↑m 𝑁)) = (𝐶 × 𝐷)) |
| 23 | 8, 15, 22 | 3eqtrd 2781 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷)) |