MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmuldm Structured version   Visualization version   GIF version

Theorem mavmuldm 22444
Description: The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵m (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵m 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
Assertion
Ref Expression
mavmuldm ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))

Proof of Theorem mavmuldm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mavmuldm.t . . . 4 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mavmuldm.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2730 . . . 4 (.r𝑅) = (.r𝑅)
4 simp1 1136 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑅𝑉)
5 simp2 1137 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑀 ∈ Fin)
6 simp3 1138 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 22436 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → · = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
87dmeqd 5872 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
9 mptexg 7198 . . . . . 6 (𝑀 ∈ Fin → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1093ad2ant2 1134 . . . . 5 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1110a1d 25 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝑥 ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑦 ∈ (𝐵m 𝑁)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V))
1211ralrimivv 3179 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
13 eqid 2730 . . . 4 (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))))
1413dmmpoga 8055 . . 3 (∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
1512, 14syl 17 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
16 mavmuldm.c . . . . 5 𝐶 = (𝐵m (𝑀 × 𝑁))
1716eqcomi 2739 . . . 4 (𝐵m (𝑀 × 𝑁)) = 𝐶
1817a1i 11 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m (𝑀 × 𝑁)) = 𝐶)
19 mavmuldm.d . . . . 5 𝐷 = (𝐵m 𝑁)
2019a1i 11 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝐷 = (𝐵m 𝑁))
2120eqcomd 2736 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m 𝑁) = 𝐷)
2218, 21xpeq12d 5672 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)) = (𝐶 × 𝐷))
238, 15, 223eqtrd 2769 1 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cop 4598  cmpt 5191   × cxp 5639  dom cdm 5641  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Fincfn 8921  Basecbs 17186  .rcmulr 17228   Σg cgsu 17410   maVecMul cmvmul 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-mvmul 22435
This theorem is referenced by:  mavmulsolcl  22445
  Copyright terms: Public domain W3C validator