MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmuldm Structured version   Visualization version   GIF version

Theorem mavmuldm 21899
Description: The domain of the matrix vector multiplication function. (Contributed by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
mavmuldm.b 𝐵 = (Base‘𝑅)
mavmuldm.c 𝐶 = (𝐵m (𝑀 × 𝑁))
mavmuldm.d 𝐷 = (𝐵m 𝑁)
mavmuldm.t · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
Assertion
Ref Expression
mavmuldm ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))

Proof of Theorem mavmuldm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mavmuldm.t . . . 4 · = (𝑅 maVecMul ⟨𝑀, 𝑁⟩)
2 mavmuldm.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
4 simp1 1136 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑅𝑉)
5 simp2 1137 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑀 ∈ Fin)
6 simp3 1138 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mvmulfval 21891 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → · = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
87dmeqd 5861 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))))
9 mptexg 7171 . . . . . 6 (𝑀 ∈ Fin → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1093ad2ant2 1134 . . . . 5 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
1110a1d 25 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝑥 ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑦 ∈ (𝐵m 𝑁)) → (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V))
1211ralrimivv 3195 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V)
13 eqid 2736 . . . 4 (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))))
1413dmmpoga 8005 . . 3 (∀𝑥 ∈ (𝐵m (𝑀 × 𝑁))∀𝑦 ∈ (𝐵m 𝑁)(𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗))))) ∈ V → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
1512, 14syl 17 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom (𝑥 ∈ (𝐵m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵m 𝑁) ↦ (𝑖𝑀 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑦𝑗)))))) = ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)))
16 mavmuldm.c . . . . 5 𝐶 = (𝐵m (𝑀 × 𝑁))
1716eqcomi 2745 . . . 4 (𝐵m (𝑀 × 𝑁)) = 𝐶
1817a1i 11 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m (𝑀 × 𝑁)) = 𝐶)
19 mavmuldm.d . . . . 5 𝐷 = (𝐵m 𝑁)
2019a1i 11 . . . 4 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → 𝐷 = (𝐵m 𝑁))
2120eqcomd 2742 . . 3 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐵m 𝑁) = 𝐷)
2218, 21xpeq12d 5664 . 2 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → ((𝐵m (𝑀 × 𝑁)) × (𝐵m 𝑁)) = (𝐶 × 𝐷))
238, 15, 223eqtrd 2780 1 ((𝑅𝑉𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → dom · = (𝐶 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cop 4592  cmpt 5188   × cxp 5631  dom cdm 5633  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134   Σg cgsu 17322   maVecMul cmvmul 21889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-mvmul 21890
This theorem is referenced by:  mavmulsolcl  21900
  Copyright terms: Public domain W3C validator