Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudm Structured version   Visualization version   GIF version

Theorem mamudm 20993
 Description: The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
Assertion
Ref Expression
mamudm ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))

Proof of Theorem mamudm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamudm.m . . . 4 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 eqid 2822 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2822 . . . 4 (.r𝑅) = (.r𝑅)
4 simpl 486 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑅𝑉)
5 simpr1 1191 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑀 ∈ Fin)
6 simpr2 1192 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑁 ∈ Fin)
7 simpr3 1193 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑃 ∈ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 20990 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → × = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
98dmeqd 5751 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
10 mpoexga 7762 . . . . . . 7 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
11103adant2 1128 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1211adantl 485 . . . . 5 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1312a1d 25 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V))
1413ralrimivv 3180 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
15 eqid 2822 . . . 4 (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))))
1615dmmpoga 7757 . . 3 (∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
1714, 16syl 17 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
18 xpfi 8777 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
19183adant3 1129 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
20 mamudm.e . . . . . 6 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
2120, 2frlmfibas 20449 . . . . 5 ((𝑅𝑉 ∧ (𝑀 × 𝑁) ∈ Fin) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
2219, 21sylan2 595 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
23 mamudm.b . . . 4 𝐵 = (Base‘𝐸)
2422, 23eqtr4di 2875 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = 𝐵)
25 xpfi 8777 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
26253adant1 1127 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
27 mamudm.f . . . . . 6 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
2827, 2frlmfibas 20449 . . . . 5 ((𝑅𝑉 ∧ (𝑁 × 𝑃) ∈ Fin) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
2926, 28sylan2 595 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
30 mamudm.c . . . 4 𝐶 = (Base‘𝐹)
3129, 30eqtr4di 2875 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = 𝐶)
3224, 31xpeq12d 5563 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))) = (𝐵 × 𝐶))
339, 17, 323eqtrd 2861 1 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  ∀wral 3130  Vcvv 3469  ⟨cotp 4547   ↦ cmpt 5122   × cxp 5530  dom cdm 5532  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142   ↑m cmap 8393  Fincfn 8496  Basecbs 16474  .rcmulr 16557   Σg cgsu 16705   freeLMod cfrlm 20433   maMul cmmul 20988 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-ot 4548  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-hom 16580  df-cco 16581  df-0g 16706  df-prds 16712  df-pws 16714  df-sra 19935  df-rgmod 19936  df-dsmm 20419  df-frlm 20434  df-mamu 20989 This theorem is referenced by:  mamufacex  20994
 Copyright terms: Public domain W3C validator