MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudm Structured version   Visualization version   GIF version

Theorem mamudm 21537
Description: The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
Assertion
Ref Expression
mamudm ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))

Proof of Theorem mamudm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamudm.m . . . 4 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
4 simpl 483 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑅𝑉)
5 simpr1 1193 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑀 ∈ Fin)
6 simpr2 1194 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑁 ∈ Fin)
7 simpr3 1195 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑃 ∈ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 21534 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → × = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
98dmeqd 5814 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
10 mpoexga 7918 . . . . . . 7 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
11103adant2 1130 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1211adantl 482 . . . . 5 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1312a1d 25 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V))
1413ralrimivv 3122 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
15 eqid 2738 . . . 4 (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))))
1615dmmpoga 7913 . . 3 (∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
1714, 16syl 17 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
18 xpfi 9085 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
19183adant3 1131 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
20 mamudm.e . . . . . 6 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
2120, 2frlmfibas 20969 . . . . 5 ((𝑅𝑉 ∧ (𝑀 × 𝑁) ∈ Fin) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
2219, 21sylan2 593 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
23 mamudm.b . . . 4 𝐵 = (Base‘𝐸)
2422, 23eqtr4di 2796 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = 𝐵)
25 xpfi 9085 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
26253adant1 1129 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
27 mamudm.f . . . . . 6 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
2827, 2frlmfibas 20969 . . . . 5 ((𝑅𝑉 ∧ (𝑁 × 𝑃) ∈ Fin) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
2926, 28sylan2 593 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
30 mamudm.c . . . 4 𝐶 = (Base‘𝐹)
3129, 30eqtr4di 2796 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = 𝐶)
3224, 31xpeq12d 5620 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))) = (𝐵 × 𝐶))
339, 17, 323eqtrd 2782 1 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cotp 4569  cmpt 5157   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151   freeLMod cfrlm 20953   maMul cmmul 21532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mamu 21533
This theorem is referenced by:  mamufacex  21538
  Copyright terms: Public domain W3C validator