MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudm Structured version   Visualization version   GIF version

Theorem mamudm 22420
Description: The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
Assertion
Ref Expression
mamudm ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))

Proof of Theorem mamudm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamudm.m . . . 4 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
4 simpl 482 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑅𝑉)
5 simpr1 1194 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑀 ∈ Fin)
6 simpr2 1195 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑁 ∈ Fin)
7 simpr3 1196 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑃 ∈ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 22417 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → × = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
98dmeqd 5930 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
10 mpoexga 8118 . . . . . . 7 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
11103adant2 1131 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1211adantl 481 . . . . 5 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1312a1d 25 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V))
1413ralrimivv 3206 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
15 eqid 2740 . . . 4 (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))))
1615dmmpoga 8114 . . 3 (∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
1714, 16syl 17 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
18 xpfi 9386 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
19183adant3 1132 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
20 mamudm.e . . . . . 6 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
2120, 2frlmfibas 21805 . . . . 5 ((𝑅𝑉 ∧ (𝑀 × 𝑁) ∈ Fin) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
2219, 21sylan2 592 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
23 mamudm.b . . . 4 𝐵 = (Base‘𝐸)
2422, 23eqtr4di 2798 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = 𝐵)
25 xpfi 9386 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
26253adant1 1130 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
27 mamudm.f . . . . . 6 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
2827, 2frlmfibas 21805 . . . . 5 ((𝑅𝑉 ∧ (𝑁 × 𝑃) ∈ Fin) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
2926, 28sylan2 592 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
30 mamudm.c . . . 4 𝐶 = (Base‘𝐹)
3129, 30eqtr4di 2798 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = 𝐶)
3224, 31xpeq12d 5731 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))) = (𝐵 × 𝐶))
339, 17, 323eqtrd 2784 1 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cotp 4656  cmpt 5249   × cxp 5698  dom cdm 5700  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312   Σg cgsu 17500   freeLMod cfrlm 21789   maMul cmmul 22415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mamu 22416
This theorem is referenced by:  mamufacex  22421
  Copyright terms: Public domain W3C validator