MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudm Structured version   Visualization version   GIF version

Theorem mamudm 22386
Description: The domain of the matrix multiplication function. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
Assertion
Ref Expression
mamudm ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))

Proof of Theorem mamudm
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamudm.m . . . 4 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 eqid 2726 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2726 . . . 4 (.r𝑅) = (.r𝑅)
4 simpl 481 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑅𝑉)
5 simpr1 1191 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑀 ∈ Fin)
6 simpr2 1192 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑁 ∈ Fin)
7 simpr3 1193 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑃 ∈ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 22383 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → × = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
98dmeqd 5912 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))))
10 mpoexga 8091 . . . . . . 7 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
11103adant2 1128 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1211adantl 480 . . . . 5 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
1312a1d 25 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))) → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V))
1413ralrimivv 3189 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V)
15 eqid 2726 . . . 4 (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))))
1615dmmpoga 8087 . . 3 (∀𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁))∀𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃))(𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘))))) ∈ V → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
1714, 16syl 17 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom (𝑥 ∈ ((Base‘𝑅) ↑m (𝑀 × 𝑁)), 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑃)) ↦ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑥𝑗)(.r𝑅)(𝑗𝑦𝑘)))))) = (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))))
18 xpfi 9360 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
19183adant3 1129 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
20 mamudm.e . . . . . 6 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
2120, 2frlmfibas 21760 . . . . 5 ((𝑅𝑉 ∧ (𝑀 × 𝑁) ∈ Fin) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
2219, 21sylan2 591 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = (Base‘𝐸))
23 mamudm.b . . . 4 𝐵 = (Base‘𝐸)
2422, 23eqtr4di 2784 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑀 × 𝑁)) = 𝐵)
25 xpfi 9360 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
26253adant1 1127 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑁 × 𝑃) ∈ Fin)
27 mamudm.f . . . . . 6 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
2827, 2frlmfibas 21760 . . . . 5 ((𝑅𝑉 ∧ (𝑁 × 𝑃) ∈ Fin) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
2926, 28sylan2 591 . . . 4 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = (Base‘𝐹))
30 mamudm.c . . . 4 𝐶 = (Base‘𝐹)
3129, 30eqtr4di 2784 . . 3 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((Base‘𝑅) ↑m (𝑁 × 𝑃)) = 𝐶)
3224, 31xpeq12d 5713 . 2 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (((Base‘𝑅) ↑m (𝑀 × 𝑁)) × ((Base‘𝑅) ↑m (𝑁 × 𝑃))) = (𝐵 × 𝐶))
339, 17, 323eqtrd 2770 1 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  cotp 4641  cmpt 5236   × cxp 5680  dom cdm 5682  cfv 6554  (class class class)co 7424  cmpo 7426  m cmap 8855  Fincfn 8974  Basecbs 17213  .rcmulr 17267   Σg cgsu 17455   freeLMod cfrlm 21744   maMul cmmul 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-prds 17462  df-pws 17464  df-sra 21151  df-rgmod 21152  df-dsmm 21730  df-frlm 21745  df-mamu 22382
This theorem is referenced by:  mamufacex  22387
  Copyright terms: Public domain W3C validator