MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpdmg Structured version   Visualization version   GIF version

Theorem relexpdmg 14393
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpdmg ((𝑁 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relexpdmg
StepHypRef Expression
1 elnn0 11887 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 relexpnndm 14392 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
3 ssun1 4099 . . . . . 6 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
42, 3sstrdi 3927 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
54ex 416 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
6 simpl 486 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
76oveq2d 7151 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
8 relexp0g 14373 . . . . . . . . . 10 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
98adantl 485 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
107, 9eqtrd 2833 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1110dmeqd 5738 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
12 dmresi 5888 . . . . . . 7 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
1311, 12eqtrdi 2849 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
14 eqimss 3971 . . . . . 6 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1513, 14syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1615ex 416 . . . 4 (𝑁 = 0 → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
175, 16jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
181, 17sylbi 220 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
1918imp 410 1 ((𝑁 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  cun 3879  wss 3881   I cid 5424  dom cdm 5519  ran crn 5520  cres 5521  (class class class)co 7135  0cc0 10526  cn 11625  0cn0 11885  𝑟crelexp 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-relexp 14371
This theorem is referenced by:  relexpdm  14394  iunrelexp0  40403
  Copyright terms: Public domain W3C validator