MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpdmg Structured version   Visualization version   GIF version

Theorem relexpdmg 14949
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpdmg ((𝑁 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem relexpdmg
StepHypRef Expression
1 elnn0 12383 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 relexpnndm 14948 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
3 ssun1 4125 . . . . . 6 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
42, 3sstrdi 3942 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
54ex 412 . . . 4 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
6 simpl 482 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
76oveq2d 7362 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
8 relexp0g 14929 . . . . . . . . . 10 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
98adantl 481 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
107, 9eqtrd 2766 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1110dmeqd 5844 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
12 dmresi 6000 . . . . . . 7 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
1311, 12eqtrdi 2782 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
14 eqimss 3988 . . . . . 6 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1513, 14syl 17 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
1615ex 412 . . . 4 (𝑁 = 0 → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
175, 16jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
181, 17sylbi 217 . 2 (𝑁 ∈ ℕ0 → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)))
1918imp 406 1 ((𝑁 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3895  wss 3897   I cid 5508  dom cdm 5614  ran crn 5615  cres 5616  (class class class)co 7346  0cc0 11006  cn 12125  0cn0 12381  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-relexp 14927
This theorem is referenced by:  relexpdm  14950  iunrelexp0  43805
  Copyright terms: Public domain W3C validator