Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docafvalN Structured version   Visualization version   GIF version

Theorem docafvalN 38418
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
docaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docaval.n 𝑁 = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docafvalN ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Distinct variable groups:   𝑥,𝑧,𝐾   𝑥,𝐼,𝑧   𝑥,𝑇   𝑥,𝑊,𝑧
Allowed substitution hints:   𝑇(𝑧)   𝐻(𝑥,𝑧)   (𝑥,𝑧)   (𝑥,𝑧)   𝑁(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem docafvalN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 docaval.n . . 3 𝑁 = ((ocA‘𝐾)‘𝑊)
2 docaval.j . . . . 5 = (join‘𝐾)
3 docaval.m . . . . 5 = (meet‘𝐾)
4 docaval.o . . . . 5 = (oc‘𝐾)
5 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
62, 3, 4, 5docaffvalN 38417 . . . 4 (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
76fveq1d 6647 . . 3 (𝐾𝑉 → ((ocA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
81, 7syl5eq 2845 . 2 (𝐾𝑉𝑁 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
9 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
10 docaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
119, 10eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
1211pweqd 4516 . . . 4 (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇)
13 fveq2 6645 . . . . . 6 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊))
14 docaval.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
1513, 14eqtr4di 2851 . . . . 5 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐼)
1615cnveqd 5710 . . . . . . . . 9 (𝑤 = 𝑊((DIsoA‘𝐾)‘𝑤) = 𝐼)
1715rneqd 5772 . . . . . . . . . . 11 (𝑤 = 𝑊 → ran ((DIsoA‘𝐾)‘𝑤) = ran 𝐼)
1817rabeqdv 3432 . . . . . . . . . 10 (𝑤 = 𝑊 → {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
1918inteqd 4843 . . . . . . . . 9 (𝑤 = 𝑊 {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
2016, 19fveq12d 6652 . . . . . . . 8 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧}) = (𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧}))
2120fveq2d 6649 . . . . . . 7 (𝑤 = 𝑊 → ( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) = ( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})))
22 fveq2 6645 . . . . . . 7 (𝑤 = 𝑊 → ( 𝑤) = ( 𝑊))
2321, 22oveq12d 7153 . . . . . 6 (𝑤 = 𝑊 → (( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) = (( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)))
24 id 22 . . . . . 6 (𝑤 = 𝑊𝑤 = 𝑊)
2523, 24oveq12d 7153 . . . . 5 (𝑤 = 𝑊 → ((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤) = ((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))
2615, 25fveq12d 6652 . . . 4 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))
2712, 26mpteq12dv 5115 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
28 eqid 2798 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))
2910fvexi 6659 . . . . 5 𝑇 ∈ V
3029pwex 5246 . . . 4 𝒫 𝑇 ∈ V
3130mptex 6963 . . 3 (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))) ∈ V
3227, 28, 31fvmpt 6745 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
338, 32sylan9eq 2853 1 ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  wss 3881  𝒫 cpw 4497   cint 4838  cmpt 5110  ccnv 5518  ran crn 5520  cfv 6324  (class class class)co 7135  occoc 16565  joincjn 17546  meetcmee 17547  LHypclh 37280  LTrncltrn 37397  DIsoAcdia 38324  ocAcocaN 38415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-docaN 38416
This theorem is referenced by:  docavalN  38419
  Copyright terms: Public domain W3C validator