Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docafvalN Structured version   Visualization version   GIF version

Theorem docafvalN 41123
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
docaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docaval.n 𝑁 = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docafvalN ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Distinct variable groups:   𝑥,𝑧,𝐾   𝑥,𝐼,𝑧   𝑥,𝑇   𝑥,𝑊,𝑧
Allowed substitution hints:   𝑇(𝑧)   𝐻(𝑥,𝑧)   (𝑥,𝑧)   (𝑥,𝑧)   𝑁(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem docafvalN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 docaval.n . . 3 𝑁 = ((ocA‘𝐾)‘𝑊)
2 docaval.j . . . . 5 = (join‘𝐾)
3 docaval.m . . . . 5 = (meet‘𝐾)
4 docaval.o . . . . 5 = (oc‘𝐾)
5 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
62, 3, 4, 5docaffvalN 41122 . . . 4 (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
76fveq1d 6863 . . 3 (𝐾𝑉 → ((ocA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
81, 7eqtrid 2777 . 2 (𝐾𝑉𝑁 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
9 fveq2 6861 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
10 docaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
119, 10eqtr4di 2783 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
1211pweqd 4583 . . . 4 (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇)
13 fveq2 6861 . . . . . 6 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊))
14 docaval.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
1513, 14eqtr4di 2783 . . . . 5 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐼)
1615cnveqd 5842 . . . . . . . . 9 (𝑤 = 𝑊((DIsoA‘𝐾)‘𝑤) = 𝐼)
1715rneqd 5905 . . . . . . . . . . 11 (𝑤 = 𝑊 → ran ((DIsoA‘𝐾)‘𝑤) = ran 𝐼)
1817rabeqdv 3424 . . . . . . . . . 10 (𝑤 = 𝑊 → {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
1918inteqd 4918 . . . . . . . . 9 (𝑤 = 𝑊 {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
2016, 19fveq12d 6868 . . . . . . . 8 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧}) = (𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧}))
2120fveq2d 6865 . . . . . . 7 (𝑤 = 𝑊 → ( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) = ( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})))
22 fveq2 6861 . . . . . . 7 (𝑤 = 𝑊 → ( 𝑤) = ( 𝑊))
2321, 22oveq12d 7408 . . . . . 6 (𝑤 = 𝑊 → (( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) = (( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)))
24 id 22 . . . . . 6 (𝑤 = 𝑊𝑤 = 𝑊)
2523, 24oveq12d 7408 . . . . 5 (𝑤 = 𝑊 → ((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤) = ((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))
2615, 25fveq12d 6868 . . . 4 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))
2712, 26mpteq12dv 5197 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
28 eqid 2730 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))
2910fvexi 6875 . . . . 5 𝑇 ∈ V
3029pwex 5338 . . . 4 𝒫 𝑇 ∈ V
3130mptex 7200 . . 3 (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))) ∈ V
3227, 28, 31fvmpt 6971 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
338, 32sylan9eq 2785 1 ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  𝒫 cpw 4566   cint 4913  cmpt 5191  ccnv 5640  ran crn 5642  cfv 6514  (class class class)co 7390  occoc 17235  joincjn 18279  meetcmee 18280  LHypclh 39985  LTrncltrn 40102  DIsoAcdia 41029  ocAcocaN 41120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-docaN 41121
This theorem is referenced by:  docavalN  41124
  Copyright terms: Public domain W3C validator