Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docafvalN Structured version   Visualization version   GIF version

Theorem docafvalN 39115
Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j = (join‘𝐾)
docaval.m = (meet‘𝐾)
docaval.o = (oc‘𝐾)
docaval.h 𝐻 = (LHyp‘𝐾)
docaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
docaval.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
docaval.n 𝑁 = ((ocA‘𝐾)‘𝑊)
Assertion
Ref Expression
docafvalN ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Distinct variable groups:   𝑥,𝑧,𝐾   𝑥,𝐼,𝑧   𝑥,𝑇   𝑥,𝑊,𝑧
Allowed substitution hints:   𝑇(𝑧)   𝐻(𝑥,𝑧)   (𝑥,𝑧)   (𝑥,𝑧)   𝑁(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem docafvalN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 docaval.n . . 3 𝑁 = ((ocA‘𝐾)‘𝑊)
2 docaval.j . . . . 5 = (join‘𝐾)
3 docaval.m . . . . 5 = (meet‘𝐾)
4 docaval.o . . . . 5 = (oc‘𝐾)
5 docaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
62, 3, 4, 5docaffvalN 39114 . . . 4 (𝐾𝑉 → (ocA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))))
76fveq1d 6770 . . 3 (𝐾𝑉 → ((ocA‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
81, 7eqtrid 2791 . 2 (𝐾𝑉𝑁 = ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊))
9 fveq2 6768 . . . . . 6 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
10 docaval.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
119, 10eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
1211pweqd 4557 . . . 4 (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇)
13 fveq2 6768 . . . . . 6 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊))
14 docaval.i . . . . . 6 𝐼 = ((DIsoA‘𝐾)‘𝑊)
1513, 14eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐼)
1615cnveqd 5781 . . . . . . . . 9 (𝑤 = 𝑊((DIsoA‘𝐾)‘𝑤) = 𝐼)
1715rneqd 5844 . . . . . . . . . . 11 (𝑤 = 𝑊 → ran ((DIsoA‘𝐾)‘𝑤) = ran 𝐼)
1817rabeqdv 3417 . . . . . . . . . 10 (𝑤 = 𝑊 → {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
1918inteqd 4889 . . . . . . . . 9 (𝑤 = 𝑊 {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧} = {𝑧 ∈ ran 𝐼𝑥𝑧})
2016, 19fveq12d 6775 . . . . . . . 8 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧}) = (𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧}))
2120fveq2d 6772 . . . . . . 7 (𝑤 = 𝑊 → ( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) = ( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})))
22 fveq2 6768 . . . . . . 7 (𝑤 = 𝑊 → ( 𝑤) = ( 𝑊))
2321, 22oveq12d 7286 . . . . . 6 (𝑤 = 𝑊 → (( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) = (( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)))
24 id 22 . . . . . 6 (𝑤 = 𝑊𝑤 = 𝑊)
2523, 24oveq12d 7286 . . . . 5 (𝑤 = 𝑊 → ((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤) = ((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))
2615, 25fveq12d 6775 . . . 4 (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)) = (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊)))
2712, 26mpteq12dv 5169 . . 3 (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
28 eqid 2739 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤)))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))
2910fvexi 6782 . . . . 5 𝑇 ∈ V
3029pwex 5306 . . . 4 𝒫 𝑇 ∈ V
3130mptex 7093 . . 3 (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))) ∈ V
3227, 28, 31fvmpt 6869 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ‘(((DIsoA‘𝐾)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥𝑧})) ( 𝑤)) 𝑤))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
338, 32sylan9eq 2799 1 ((𝐾𝑉𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ‘(𝐼 {𝑧 ∈ ran 𝐼𝑥𝑧})) ( 𝑊)) 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  {crab 3069  wss 3891  𝒫 cpw 4538   cint 4884  cmpt 5161  ccnv 5587  ran crn 5589  cfv 6430  (class class class)co 7268  occoc 16951  joincjn 18010  meetcmee 18011  LHypclh 37977  LTrncltrn 38094  DIsoAcdia 39021  ocAcocaN 39112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-docaN 39113
This theorem is referenced by:  docavalN  39116
  Copyright terms: Public domain W3C validator