Step | Hyp | Ref
| Expression |
1 | | docaval.n |
. . 3
⊢ 𝑁 = ((ocA‘𝐾)‘𝑊) |
2 | | docaval.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
3 | | docaval.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
4 | | docaval.o |
. . . . 5
⊢ ⊥ =
(oc‘𝐾) |
5 | | docaval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
6 | 2, 3, 4, 5 | docaffvalN 39177 |
. . . 4
⊢ (𝐾 ∈ 𝑉 → (ocA‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))) |
7 | 6 | fveq1d 6806 |
. . 3
⊢ (𝐾 ∈ 𝑉 → ((ocA‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))‘𝑊)) |
8 | 1, 7 | eqtrid 2788 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝑁 = ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))‘𝑊)) |
9 | | fveq2 6804 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
10 | | docaval.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 9, 10 | eqtr4di 2794 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇) |
12 | 11 | pweqd 4556 |
. . . 4
⊢ (𝑤 = 𝑊 → 𝒫 ((LTrn‘𝐾)‘𝑤) = 𝒫 𝑇) |
13 | | fveq2 6804 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = ((DIsoA‘𝐾)‘𝑊)) |
14 | | docaval.i |
. . . . . 6
⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
15 | 13, 14 | eqtr4di 2794 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((DIsoA‘𝐾)‘𝑤) = 𝐼) |
16 | 15 | cnveqd 5797 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ◡((DIsoA‘𝐾)‘𝑤) = ◡𝐼) |
17 | 15 | rneqd 5859 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → ran ((DIsoA‘𝐾)‘𝑤) = ran 𝐼) |
18 | 17 | rabeqdv 3426 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧} = {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧}) |
19 | 18 | inteqd 4891 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧} = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧}) |
20 | 16, 19 | fveq12d 6811 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧}) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) |
21 | 20 | fveq2d 6808 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) = ( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧}))) |
22 | | fveq2 6804 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ( ⊥ ‘𝑤) = ( ⊥ ‘𝑊)) |
23 | 21, 22 | oveq12d 7325 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) = (( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊))) |
24 | | id 22 |
. . . . . 6
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
25 | 23, 24 | oveq12d 7325 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤) = ((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)) |
26 | 15, 25 | fveq12d 6811 |
. . . 4
⊢ (𝑤 = 𝑊 → (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤)) = (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) |
27 | 12, 26 | mpteq12dv 5172 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
28 | | eqid 2736 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤)))) = (𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤)))) |
29 | 10 | fvexi 6818 |
. . . . 5
⊢ 𝑇 ∈ V |
30 | 29 | pwex 5312 |
. . . 4
⊢ 𝒫
𝑇 ∈ V |
31 | 30 | mptex 7131 |
. . 3
⊢ (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊))) ∈ V |
32 | 27, 28, 31 | fvmpt 6907 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝐾)‘𝑤) ↦ (((DIsoA‘𝐾)‘𝑤)‘((( ⊥ ‘(◡((DIsoA‘𝐾)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝐾)‘𝑤) ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑤)) ∧ 𝑤))))‘𝑊) = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |
33 | 8, 32 | sylan9eq 2796 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑇 ↦ (𝐼‘((( ⊥ ‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧})) ∨ ( ⊥ ‘𝑊)) ∧ 𝑊)))) |