Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   GIF version

Theorem dochval 39292
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
dochval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dochval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochval.v 𝑉 = (Base‘𝑈)
dochval.n 𝑁 = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochval (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝐺(𝑦)   𝐻(𝑦)   𝐼(𝑦)   𝑁(𝑦)   (𝑦)   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem dochval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dochval.g . . . . 5 𝐺 = (glb‘𝐾)
3 dochval.o . . . . 5 = (oc‘𝐾)
4 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dochval.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
6 dochval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 dochval.v . . . . 5 𝑉 = (Base‘𝑈)
8 dochval.n . . . . 5 𝑁 = ((ocH‘𝐾)‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8dochfval 39291 . . . 4 ((𝐾𝑌𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
109adantr 480 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
1110fveq1d 6758 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋))
127fvexi 6770 . . . . . 6 𝑉 ∈ V
1312elpw2 5264 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1413biimpri 227 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1514adantl 481 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ∈ 𝒫 𝑉)
16 fvex 6769 . . 3 (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V
17 sseq1 3942 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ⊆ (𝐼𝑦) ↔ 𝑋 ⊆ (𝐼𝑦)))
1817rabbidv 3404 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝐵𝑥 ⊆ (𝐼𝑦)} = {𝑦𝐵𝑋 ⊆ (𝐼𝑦)})
1918fveq2d 6760 . . . . . 6 (𝑥 = 𝑋 → (𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}) = (𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))
2019fveq2d 6760 . . . . 5 (𝑥 = 𝑋 → ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)})))
2120fveq2d 6760 . . . 4 (𝑥 = 𝑋 → (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
22 eqid 2738 . . . 4 (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))
2321, 22fvmptg 6855 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2415, 16, 23sylancl 585 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2511, 24eqtrd 2778 1 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  cmpt 5153  cfv 6418  Basecbs 16840  occoc 16896  glbcglb 17943  LHypclh 37925  DVecHcdvh 39019  DIsoHcdih 39169  ocHcoch 39288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-doch 39289
This theorem is referenced by:  dochval2  39293  dochcl  39294  dochvalr  39298  dochss  39306
  Copyright terms: Public domain W3C validator