| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochval | Structured version Visualization version GIF version | ||
| Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| dochval.b | ⊢ 𝐵 = (Base‘𝐾) |
| dochval.g | ⊢ 𝐺 = (glb‘𝐾) |
| dochval.o | ⊢ ⊥ = (oc‘𝐾) |
| dochval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dochval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochval.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochval.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dochval | ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dochval.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
| 3 | dochval.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
| 4 | dochval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dochval.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 6 | dochval.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | dochval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | dochval.n | . . . . 5 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochfval 41368 | . . . 4 ⊢ ((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
| 10 | 9 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
| 11 | 10 | fveq1d 6819 | . 2 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋)) |
| 12 | 7 | fvexi 6831 | . . . . . 6 ⊢ 𝑉 ∈ V |
| 13 | 12 | elpw2 5270 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉) |
| 14 | 13 | biimpri 228 | . . . 4 ⊢ (𝑋 ⊆ 𝑉 → 𝑋 ∈ 𝒫 𝑉) |
| 15 | 14 | adantl 481 | . . 3 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ∈ 𝒫 𝑉) |
| 16 | fvex 6830 | . . 3 ⊢ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ V | |
| 17 | sseq1 3958 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ (𝐼‘𝑦) ↔ 𝑋 ⊆ (𝐼‘𝑦))) | |
| 18 | 17 | rabbidv 3400 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)} = {𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}) |
| 19 | 18 | fveq2d 6821 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}) = (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})) |
| 20 | 19 | fveq2d 6821 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})) = ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) |
| 21 | 20 | fveq2d 6821 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
| 22 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) | |
| 23 | 21, 22 | fvmptg 6922 | . . 3 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ V) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
| 24 | 15, 16, 23 | sylancl 586 | . 2 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
| 25 | 11, 24 | eqtrd 2765 | 1 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 Vcvv 3434 ⊆ wss 3900 𝒫 cpw 4548 ↦ cmpt 5170 ‘cfv 6477 Basecbs 17112 occoc 17161 glbcglb 18208 LHypclh 40002 DVecHcdvh 41096 DIsoHcdih 41246 ocHcoch 41365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-doch 41366 |
| This theorem is referenced by: dochval2 41370 dochcl 41371 dochvalr 41375 dochss 41383 |
| Copyright terms: Public domain | W3C validator |