Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   GIF version

Theorem dochval 40217
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐡 = (Baseβ€˜πΎ)
dochval.g 𝐺 = (glbβ€˜πΎ)
dochval.o βŠ₯ = (ocβ€˜πΎ)
dochval.h 𝐻 = (LHypβ€˜πΎ)
dochval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dochval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dochval.v 𝑉 = (Baseβ€˜π‘ˆ)
dochval.n 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dochval (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
Distinct variable groups:   𝑦,𝐡   𝑦,𝐾   𝑦,π‘Š   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝐺(𝑦)   𝐻(𝑦)   𝐼(𝑦)   𝑁(𝑦)   βŠ₯ (𝑦)   𝑉(𝑦)   π‘Œ(𝑦)

Proof of Theorem dochval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 dochval.g . . . . 5 𝐺 = (glbβ€˜πΎ)
3 dochval.o . . . . 5 βŠ₯ = (ocβ€˜πΎ)
4 dochval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 dochval.i . . . . 5 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
6 dochval.u . . . . 5 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
7 dochval.v . . . . 5 𝑉 = (Baseβ€˜π‘ˆ)
8 dochval.n . . . . 5 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
91, 2, 3, 4, 5, 6, 7, 8dochfval 40216 . . . 4 ((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
109adantr 481 . . 3 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
1110fveq1d 6893 . 2 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹))
127fvexi 6905 . . . . . 6 𝑉 ∈ V
1312elpw2 5345 . . . . 5 (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 βŠ† 𝑉)
1413biimpri 227 . . . 4 (𝑋 βŠ† 𝑉 β†’ 𝑋 ∈ 𝒫 𝑉)
1514adantl 482 . . 3 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ 𝑋 ∈ 𝒫 𝑉)
16 fvex 6904 . . 3 (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))) ∈ V
17 sseq1 4007 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† (πΌβ€˜π‘¦) ↔ 𝑋 βŠ† (πΌβ€˜π‘¦)))
1817rabbidv 3440 . . . . . . 7 (π‘₯ = 𝑋 β†’ {𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)} = {𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)})
1918fveq2d 6895 . . . . . 6 (π‘₯ = 𝑋 β†’ (πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}) = (πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))
2019fveq2d 6895 . . . . 5 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})) = ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)})))
2120fveq2d 6895 . . . 4 (π‘₯ = 𝑋 β†’ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
22 eqid 2732 . . . 4 (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))) = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))
2321, 22fvmptg 6996 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))) ∈ V) β†’ ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
2415, 16, 23sylancl 586 . 2 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
2511, 24eqtrd 2772 1 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602   ↦ cmpt 5231  β€˜cfv 6543  Basecbs 17143  occoc 17204  glbcglb 18262  LHypclh 38850  DVecHcdvh 39944  DIsoHcdih 40094  ocHcoch 40213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-doch 40214
This theorem is referenced by:  dochval2  40218  dochcl  40219  dochvalr  40223  dochss  40231
  Copyright terms: Public domain W3C validator