Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   GIF version

Theorem dochval 40734
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐡 = (Baseβ€˜πΎ)
dochval.g 𝐺 = (glbβ€˜πΎ)
dochval.o βŠ₯ = (ocβ€˜πΎ)
dochval.h 𝐻 = (LHypβ€˜πΎ)
dochval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dochval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dochval.v 𝑉 = (Baseβ€˜π‘ˆ)
dochval.n 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dochval (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
Distinct variable groups:   𝑦,𝐡   𝑦,𝐾   𝑦,π‘Š   𝑦,𝑋
Allowed substitution hints:   π‘ˆ(𝑦)   𝐺(𝑦)   𝐻(𝑦)   𝐼(𝑦)   𝑁(𝑦)   βŠ₯ (𝑦)   𝑉(𝑦)   π‘Œ(𝑦)

Proof of Theorem dochval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
2 dochval.g . . . . 5 𝐺 = (glbβ€˜πΎ)
3 dochval.o . . . . 5 βŠ₯ = (ocβ€˜πΎ)
4 dochval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 dochval.i . . . . 5 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
6 dochval.u . . . . 5 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
7 dochval.v . . . . 5 𝑉 = (Baseβ€˜π‘ˆ)
8 dochval.n . . . . 5 𝑁 = ((ocHβ€˜πΎ)β€˜π‘Š)
91, 2, 3, 4, 5, 6, 7, 8dochfval 40733 . . . 4 ((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
109adantr 480 . . 3 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ 𝑁 = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))))
1110fveq1d 6886 . 2 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹))
127fvexi 6898 . . . . . 6 𝑉 ∈ V
1312elpw2 5338 . . . . 5 (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 βŠ† 𝑉)
1413biimpri 227 . . . 4 (𝑋 βŠ† 𝑉 β†’ 𝑋 ∈ 𝒫 𝑉)
1514adantl 481 . . 3 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ 𝑋 ∈ 𝒫 𝑉)
16 fvex 6897 . . 3 (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))) ∈ V
17 sseq1 4002 . . . . . . . 8 (π‘₯ = 𝑋 β†’ (π‘₯ βŠ† (πΌβ€˜π‘¦) ↔ 𝑋 βŠ† (πΌβ€˜π‘¦)))
1817rabbidv 3434 . . . . . . 7 (π‘₯ = 𝑋 β†’ {𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)} = {𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)})
1918fveq2d 6888 . . . . . 6 (π‘₯ = 𝑋 β†’ (πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}) = (πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))
2019fveq2d 6888 . . . . 5 (π‘₯ = 𝑋 β†’ ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})) = ( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)})))
2120fveq2d 6888 . . . 4 (π‘₯ = 𝑋 β†’ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
22 eqid 2726 . . . 4 (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)})))) = (π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))
2321, 22fvmptg 6989 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))) ∈ V) β†’ ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
2415, 16, 23sylancl 585 . 2 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ ((π‘₯ ∈ 𝒫 𝑉 ↦ (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ π‘₯ βŠ† (πΌβ€˜π‘¦)}))))β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
2511, 24eqtrd 2766 1 (((𝐾 ∈ π‘Œ ∧ π‘Š ∈ 𝐻) ∧ 𝑋 βŠ† 𝑉) β†’ (π‘β€˜π‘‹) = (πΌβ€˜( βŠ₯ β€˜(πΊβ€˜{𝑦 ∈ 𝐡 ∣ 𝑋 βŠ† (πΌβ€˜π‘¦)}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3426  Vcvv 3468   βŠ† wss 3943  π’« cpw 4597   ↦ cmpt 5224  β€˜cfv 6536  Basecbs 17150  occoc 17211  glbcglb 18272  LHypclh 39367  DVecHcdvh 40461  DIsoHcdih 40611  ocHcoch 40730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-doch 40731
This theorem is referenced by:  dochval2  40735  dochcl  40736  dochvalr  40740  dochss  40748
  Copyright terms: Public domain W3C validator