Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochval Structured version   Visualization version   GIF version

Theorem dochval 38486
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
dochval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dochval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochval.v 𝑉 = (Base‘𝑈)
dochval.n 𝑁 = ((ocH‘𝐾)‘𝑊)
Assertion
Ref Expression
dochval (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐾   𝑦,𝑊   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝐺(𝑦)   𝐻(𝑦)   𝐼(𝑦)   𝑁(𝑦)   (𝑦)   𝑉(𝑦)   𝑌(𝑦)

Proof of Theorem dochval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dochval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dochval.g . . . . 5 𝐺 = (glb‘𝐾)
3 dochval.o . . . . 5 = (oc‘𝐾)
4 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 dochval.i . . . . 5 𝐼 = ((DIsoH‘𝐾)‘𝑊)
6 dochval.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 dochval.v . . . . 5 𝑉 = (Base‘𝑈)
8 dochval.n . . . . 5 𝑁 = ((ocH‘𝐾)‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8dochfval 38485 . . . 4 ((𝐾𝑌𝑊𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
109adantr 483 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))))
1110fveq1d 6671 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋))
127fvexi 6683 . . . . . 6 𝑉 ∈ V
1312elpw2 5247 . . . . 5 (𝑋 ∈ 𝒫 𝑉𝑋𝑉)
1413biimpri 230 . . . 4 (𝑋𝑉𝑋 ∈ 𝒫 𝑉)
1514adantl 484 . . 3 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → 𝑋 ∈ 𝒫 𝑉)
16 fvex 6682 . . 3 (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V
17 sseq1 3991 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 ⊆ (𝐼𝑦) ↔ 𝑋 ⊆ (𝐼𝑦)))
1817rabbidv 3480 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝐵𝑥 ⊆ (𝐼𝑦)} = {𝑦𝐵𝑋 ⊆ (𝐼𝑦)})
1918fveq2d 6673 . . . . . 6 (𝑥 = 𝑋 → (𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}) = (𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))
2019fveq2d 6673 . . . . 5 (𝑥 = 𝑋 → ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)})))
2120fveq2d 6673 . . . 4 (𝑥 = 𝑋 → (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
22 eqid 2821 . . . 4 (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))
2321, 22fvmptg 6765 . . 3 ((𝑋 ∈ 𝒫 𝑉 ∧ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))) ∈ V) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2415, 16, 23sylancl 588 . 2 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (𝐼𝑦)}))))‘𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
2511, 24eqtrd 2856 1 (((𝐾𝑌𝑊𝐻) ∧ 𝑋𝑉) → (𝑁𝑋) = (𝐼‘( ‘(𝐺‘{𝑦𝐵𝑋 ⊆ (𝐼𝑦)}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  wss 3935  𝒫 cpw 4538  cmpt 5145  cfv 6354  Basecbs 16482  occoc 16572  glbcglb 17552  LHypclh 37119  DVecHcdvh 38213  DIsoHcdih 38363  ocHcoch 38482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-doch 38483
This theorem is referenced by:  dochval2  38487  dochcl  38488  dochvalr  38492  dochss  38500
  Copyright terms: Public domain W3C validator