Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochval | Structured version Visualization version GIF version |
Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
Ref | Expression |
---|---|
dochval.b | ⊢ 𝐵 = (Base‘𝐾) |
dochval.g | ⊢ 𝐺 = (glb‘𝐾) |
dochval.o | ⊢ ⊥ = (oc‘𝐾) |
dochval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochval.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochval.v | ⊢ 𝑉 = (Base‘𝑈) |
dochval.n | ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochval | ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dochval.g | . . . . 5 ⊢ 𝐺 = (glb‘𝐾) | |
3 | dochval.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
4 | dochval.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dochval.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | dochval.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochval.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | dochval.n | . . . . 5 ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dochfval 39291 | . . . 4 ⊢ ((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
10 | 9 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑁 = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))) |
11 | 10 | fveq1d 6758 | . 2 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋)) |
12 | 7 | fvexi 6770 | . . . . . 6 ⊢ 𝑉 ∈ V |
13 | 12 | elpw2 5264 | . . . . 5 ⊢ (𝑋 ∈ 𝒫 𝑉 ↔ 𝑋 ⊆ 𝑉) |
14 | 13 | biimpri 227 | . . . 4 ⊢ (𝑋 ⊆ 𝑉 → 𝑋 ∈ 𝒫 𝑉) |
15 | 14 | adantl 481 | . . 3 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → 𝑋 ∈ 𝒫 𝑉) |
16 | fvex 6769 | . . 3 ⊢ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ V | |
17 | sseq1 3942 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥 ⊆ (𝐼‘𝑦) ↔ 𝑋 ⊆ (𝐼‘𝑦))) | |
18 | 17 | rabbidv 3404 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)} = {𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}) |
19 | 18 | fveq2d 6760 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}) = (𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})) |
20 | 19 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 = 𝑋 → ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})) = ( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) |
21 | 20 | fveq2d 6760 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
22 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) = (𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)})))) | |
23 | 21, 22 | fvmptg 6855 | . . 3 ⊢ ((𝑋 ∈ 𝒫 𝑉 ∧ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)}))) ∈ V) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
24 | 15, 16, 23 | sylancl 585 | . 2 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ((𝑥 ∈ 𝒫 𝑉 ↦ (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑥 ⊆ (𝐼‘𝑦)}))))‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
25 | 11, 24 | eqtrd 2778 | 1 ⊢ (((𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) = (𝐼‘( ⊥ ‘(𝐺‘{𝑦 ∈ 𝐵 ∣ 𝑋 ⊆ (𝐼‘𝑦)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ↦ cmpt 5153 ‘cfv 6418 Basecbs 16840 occoc 16896 glbcglb 17943 LHypclh 37925 DVecHcdvh 39019 DIsoHcdih 39169 ocHcoch 39288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-doch 39289 |
This theorem is referenced by: dochval2 39293 dochcl 39294 dochvalr 39298 dochss 39306 |
Copyright terms: Public domain | W3C validator |