| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 13025. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem6 | ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7464 | . 2 ⊢ (ℚ ↑m ℕ) ∈ V | |
| 2 | rpnnen1lem.1 | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 3 | rpnnen1lem.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 4 | rpnnen1lem.n | . . . 4 ⊢ ℕ ∈ V | |
| 5 | rpnnen1lem.q | . . . 4 ⊢ ℚ ∈ V | |
| 6 | 2, 3, 4, 5 | rpnnen1lem1 13020 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 7 | rneq 5947 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) | |
| 8 | 7 | supeq1d 9486 | . . . . 5 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
| 9 | 2, 3, 4, 5 | rpnnen1lem5 13023 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) |
| 10 | fveq2 6906 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | rneqd 5949 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) |
| 12 | 11 | supeq1d 9486 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 14 | 12, 13 | eqeq12d 2753 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦)) |
| 15 | 14, 9 | vtoclga 3577 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦) |
| 16 | 9, 15 | eqeqan12d 2751 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < ) ↔ 𝑥 = 𝑦)) |
| 17 | 8, 16 | imbitrid 244 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 18 | 17, 10 | impbid1 225 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
| 19 | 6, 18 | dom2 9035 | . 2 ⊢ ((ℚ ↑m ℕ) ∈ V → ℝ ≼ (ℚ ↑m ℕ)) |
| 20 | 1, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ≼ cdom 8983 supcsup 9480 ℝcr 11154 < clt 11295 / cdiv 11920 ℕcn 12266 ℤcz 12613 ℚcq 12990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-q 12991 |
| This theorem is referenced by: rpnnen1 13025 |
| Copyright terms: Public domain | W3C validator |