| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen1lem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen1 12999. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rpnnen1lem.1 | ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
| rpnnen1lem.2 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
| rpnnen1lem.n | ⊢ ℕ ∈ V |
| rpnnen1lem.q | ⊢ ℚ ∈ V |
| Ref | Expression |
|---|---|
| rpnnen1lem6 | ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7438 | . 2 ⊢ (ℚ ↑m ℕ) ∈ V | |
| 2 | rpnnen1lem.1 | . . . 4 ⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} | |
| 3 | rpnnen1lem.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) | |
| 4 | rpnnen1lem.n | . . . 4 ⊢ ℕ ∈ V | |
| 5 | rpnnen1lem.q | . . . 4 ⊢ ℚ ∈ V | |
| 6 | 2, 3, 4, 5 | rpnnen1lem1 12994 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m ℕ)) |
| 7 | rneq 5916 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) | |
| 8 | 7 | supeq1d 9458 | . . . . 5 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
| 9 | 2, 3, 4, 5 | rpnnen1lem5 12997 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥) |
| 10 | fveq2 6876 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | rneqd 5918 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → ran (𝐹‘𝑥) = ran (𝐹‘𝑦)) |
| 12 | 11 | supeq1d 9458 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < )) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 14 | 12, 13 | eqeq12d 2751 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (sup(ran (𝐹‘𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦)) |
| 15 | 14, 9 | vtoclga 3556 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → sup(ran (𝐹‘𝑦), ℝ, < ) = 𝑦) |
| 16 | 9, 15 | eqeqan12d 2749 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹‘𝑥), ℝ, < ) = sup(ran (𝐹‘𝑦), ℝ, < ) ↔ 𝑥 = 𝑦)) |
| 17 | 8, 16 | imbitrid 244 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
| 18 | 17, 10 | impbid1 225 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
| 19 | 6, 18 | dom2 9009 | . 2 ⊢ ((ℚ ↑m ℕ) ∈ V → ℝ ≼ (ℚ ↑m ℕ)) |
| 20 | 1, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ (ℚ ↑m ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ≼ cdom 8957 supcsup 9452 ℝcr 11128 < clt 11269 / cdiv 11894 ℕcn 12240 ℤcz 12588 ℚcq 12964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-q 12965 |
| This theorem is referenced by: rpnnen1 12999 |
| Copyright terms: Public domain | W3C validator |