MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem6 Structured version   Visualization version   GIF version

Theorem rpnnen1lem6 12963
Description: Lemma for rpnnen1 12964. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem6 ℝ ≼ (ℚ ↑m ℕ)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ovex 7434 . 2 (ℚ ↑m ℕ) ∈ V
2 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
3 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
4 rpnnen1lem.n . . . 4 ℕ ∈ V
5 rpnnen1lem.q . . . 4 ℚ ∈ V
62, 3, 4, 5rpnnen1lem1 12959 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
7 rneq 5925 . . . . . 6 ((𝐹𝑥) = (𝐹𝑦) → ran (𝐹𝑥) = ran (𝐹𝑦))
87supeq1d 9437 . . . . 5 ((𝐹𝑥) = (𝐹𝑦) → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
92, 3, 4, 5rpnnen1lem5 12962 . . . . . 6 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
10 fveq2 6881 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110rneqd 5927 . . . . . . . . 9 (𝑥 = 𝑦 → ran (𝐹𝑥) = ran (𝐹𝑦))
1211supeq1d 9437 . . . . . . . 8 (𝑥 = 𝑦 → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
13 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13eqeq12d 2740 . . . . . . 7 (𝑥 = 𝑦 → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹𝑦), ℝ, < ) = 𝑦))
1514, 9vtoclga 3558 . . . . . 6 (𝑦 ∈ ℝ → sup(ran (𝐹𝑦), ℝ, < ) = 𝑦)
169, 15eqeqan12d 2738 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ) ↔ 𝑥 = 𝑦))
178, 16imbitrid 243 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1817, 10impbid1 224 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
196, 18dom2 8987 . 2 ((ℚ ↑m ℕ) ∈ V → ℝ ≼ (ℚ ↑m ℕ))
201, 19ax-mp 5 1 ℝ ≼ (ℚ ↑m ℕ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466   class class class wbr 5138  cmpt 5221  ran crn 5667  cfv 6533  (class class class)co 7401  m cmap 8816  cdom 8933  supcsup 9431  cr 11105   < clt 11245   / cdiv 11868  cn 12209  cz 12555  cq 12929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-n0 12470  df-z 12556  df-q 12930
This theorem is referenced by:  rpnnen1  12964
  Copyright terms: Public domain W3C validator