MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem6 Structured version   Visualization version   GIF version

Theorem rpnnen1lem6 12880
Description: Lemma for rpnnen1 12881. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem6 ℝ ≼ (ℚ ↑m ℕ)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . 2 (ℚ ↑m ℕ) ∈ V
2 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
3 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
4 rpnnen1lem.n . . . 4 ℕ ∈ V
5 rpnnen1lem.q . . . 4 ℚ ∈ V
62, 3, 4, 5rpnnen1lem1 12876 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
7 rneq 5875 . . . . . 6 ((𝐹𝑥) = (𝐹𝑦) → ran (𝐹𝑥) = ran (𝐹𝑦))
87supeq1d 9330 . . . . 5 ((𝐹𝑥) = (𝐹𝑦) → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
92, 3, 4, 5rpnnen1lem5 12879 . . . . . 6 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
10 fveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110rneqd 5877 . . . . . . . . 9 (𝑥 = 𝑦 → ran (𝐹𝑥) = ran (𝐹𝑦))
1211supeq1d 9330 . . . . . . . 8 (𝑥 = 𝑦 → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
13 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13eqeq12d 2747 . . . . . . 7 (𝑥 = 𝑦 → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹𝑦), ℝ, < ) = 𝑦))
1514, 9vtoclga 3528 . . . . . 6 (𝑦 ∈ ℝ → sup(ran (𝐹𝑦), ℝ, < ) = 𝑦)
169, 15eqeqan12d 2745 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ) ↔ 𝑥 = 𝑦))
178, 16imbitrid 244 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1817, 10impbid1 225 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
196, 18dom2 8917 . 2 ((ℚ ↑m ℕ) ∈ V → ℝ ≼ (ℚ ↑m ℕ))
201, 19ax-mp 5 1 ℝ ≼ (ℚ ↑m ℕ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  m cmap 8750  cdom 8867  supcsup 9324  cr 11005   < clt 11146   / cdiv 11774  cn 12125  cz 12468  cq 12846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-q 12847
This theorem is referenced by:  rpnnen1  12881
  Copyright terms: Public domain W3C validator