MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem6 Structured version   Visualization version   GIF version

Theorem rpnnen1lem6 13024
Description: Lemma for rpnnen1 13025. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 15-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem6 ℝ ≼ (ℚ ↑m ℕ)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . 2 (ℚ ↑m ℕ) ∈ V
2 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
3 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
4 rpnnen1lem.n . . . 4 ℕ ∈ V
5 rpnnen1lem.q . . . 4 ℚ ∈ V
62, 3, 4, 5rpnnen1lem1 13020 . . 3 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
7 rneq 5947 . . . . . 6 ((𝐹𝑥) = (𝐹𝑦) → ran (𝐹𝑥) = ran (𝐹𝑦))
87supeq1d 9486 . . . . 5 ((𝐹𝑥) = (𝐹𝑦) → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
92, 3, 4, 5rpnnen1lem5 13023 . . . . . 6 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
10 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110rneqd 5949 . . . . . . . . 9 (𝑥 = 𝑦 → ran (𝐹𝑥) = ran (𝐹𝑦))
1211supeq1d 9486 . . . . . . . 8 (𝑥 = 𝑦 → sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ))
13 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13eqeq12d 2753 . . . . . . 7 (𝑥 = 𝑦 → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ sup(ran (𝐹𝑦), ℝ, < ) = 𝑦))
1514, 9vtoclga 3577 . . . . . 6 (𝑦 ∈ ℝ → sup(ran (𝐹𝑦), ℝ, < ) = 𝑦)
169, 15eqeqan12d 2751 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = sup(ran (𝐹𝑦), ℝ, < ) ↔ 𝑥 = 𝑦))
178, 16imbitrid 244 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
1817, 10impbid1 225 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
196, 18dom2 9035 . 2 ((ℚ ↑m ℕ) ∈ V → ℝ ≼ (ℚ ↑m ℕ))
201, 19ax-mp 5 1 ℝ ≼ (ℚ ↑m ℕ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  m cmap 8866  cdom 8983  supcsup 9480  cr 11154   < clt 11295   / cdiv 11920  cn 12266  cz 12613  cq 12990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-q 12991
This theorem is referenced by:  rpnnen1  13025
  Copyright terms: Public domain W3C validator