MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj Structured version   Visualization version   GIF version

Theorem dprddisj 19948
Description: The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz.3 (𝜑𝑋𝐼)
dprddisj.0 0 = (0g𝐺)
dprddisj.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprddisj (𝜑 → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })

Proof of Theorem dprddisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . 4 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
2 sneq 4602 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32difeq2d 4092 . . . . . . 7 (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
43imaeq2d 6034 . . . . . 6 (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋})))
54unieqd 4887 . . . . 5 (𝑥 = 𝑋 (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋})))
65fveq2d 6865 . . . 4 (𝑥 = 𝑋 → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))))
71, 6ineq12d 4187 . . 3 (𝑥 = 𝑋 → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))))
87eqeq1d 2732 . 2 (𝑥 = 𝑋 → (((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }))
9 dprdcntz.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
10 dprdcntz.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
119, 10dprddomcld 19940 . . . . . 6 (𝜑𝐼 ∈ V)
12 eqid 2730 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
13 dprddisj.0 . . . . . . 7 0 = (0g𝐺)
14 dprddisj.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
1512, 13, 14dmdprd 19937 . . . . . 6 ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
1611, 10, 15syl2anc 584 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
179, 16mpbid 232 . . . 4 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
1817simp3d 1144 . . 3 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
19 simpr 484 . . . 4 ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
2019ralimi 3067 . . 3 (∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥𝐼 ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
2118, 20syl 17 . 2 (𝜑 → ∀𝑥𝐼 ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
22 dprdcntz.3 . 2 (𝜑𝑋𝐼)
238, 21, 22rspcdva 3592 1 (𝜑 → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  cin 3916  wss 3917  {csn 4592   cuni 4874   class class class wbr 5110  dom cdm 5641  cima 5644  wf 6510  cfv 6514  0gc0g 17409  mrClscmrc 17551  Grpcgrp 18872  SubGrpcsubg 19059  Cntzccntz 19254   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-ixp 8874  df-dprd 19934
This theorem is referenced by:  dprdfeq0  19961  dprdres  19967  dprdss  19968  dprdf1o  19971  dprd2da  19981  dmdprdsplit2lem  19984
  Copyright terms: Public domain W3C validator