MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddisj Structured version   Visualization version   GIF version

Theorem dprddisj 19527
Description: The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz.3 (𝜑𝑋𝐼)
dprddisj.0 0 = (0g𝐺)
dprddisj.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprddisj (𝜑 → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })

Proof of Theorem dprddisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
2 sneq 4568 . . . . . . . 8 (𝑥 = 𝑋 → {𝑥} = {𝑋})
32difeq2d 4053 . . . . . . 7 (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
43imaeq2d 5958 . . . . . 6 (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋})))
54unieqd 4850 . . . . 5 (𝑥 = 𝑋 (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋})))
65fveq2d 6760 . . . 4 (𝑥 = 𝑋 → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾 (𝑆 “ (𝐼 ∖ {𝑋}))))
71, 6ineq12d 4144 . . 3 (𝑥 = 𝑋 → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))))
87eqeq1d 2740 . 2 (𝑥 = 𝑋 → (((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }))
9 dprdcntz.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
10 dprdcntz.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
119, 10dprddomcld 19519 . . . . . 6 (𝜑𝐼 ∈ V)
12 eqid 2738 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
13 dprddisj.0 . . . . . . 7 0 = (0g𝐺)
14 dprddisj.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
1512, 13, 14dmdprd 19516 . . . . . 6 ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
1611, 10, 15syl2anc 583 . . . . 5 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
179, 16mpbid 231 . . . 4 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))
1817simp3d 1142 . . 3 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
19 simpr 484 . . . 4 ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
2019ralimi 3086 . . 3 (∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥𝐼 ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
2118, 20syl 17 . 2 (𝜑 → ∀𝑥𝐼 ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
22 dprdcntz.3 . 2 (𝜑𝑋𝐼)
238, 21, 22rspcdva 3554 1 (𝜑 → ((𝑆𝑋) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cin 3882  wss 3883  {csn 4558   cuni 4836   class class class wbr 5070  dom cdm 5580  cima 5583  wf 6414  cfv 6418  0gc0g 17067  mrClscmrc 17209  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ixp 8644  df-dprd 19513
This theorem is referenced by:  dprdfeq0  19540  dprdres  19546  dprdss  19547  dprdf1o  19550  dprd2da  19560  dmdprdsplit2lem  19563
  Copyright terms: Public domain W3C validator