Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprddisj | Structured version Visualization version GIF version |
Description: The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdcntz.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dprddisj.0 | ⊢ 0 = (0g‘𝐺) |
dprddisj.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprddisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6663 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) | |
2 | sneq 4535 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | difeq2d 4030 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
4 | 3 | imaeq2d 5906 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋}))) |
5 | 4 | unieqd 4815 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {𝑋}))) |
6 | 5 | fveq2d 6667 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) |
7 | 1, 6 | ineq12d 4120 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))))) |
8 | 7 | eqeq1d 2760 | . 2 ⊢ (𝑥 = 𝑋 → (((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })) |
9 | dprdcntz.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
10 | dprdcntz.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
11 | 9, 10 | dprddomcld 19204 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
12 | eqid 2758 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
13 | dprddisj.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
14 | dprddisj.k | . . . . . . 7 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
15 | 12, 13, 14 | dmdprd 19201 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
16 | 11, 10, 15 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
17 | 9, 16 | mpbid 235 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
18 | 17 | simp3d 1141 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
19 | simpr 488 | . . . 4 ⊢ ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) | |
20 | 19 | ralimi 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
21 | 18, 20 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
22 | dprdcntz.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
23 | 8, 21, 22 | rspcdva 3545 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∖ cdif 3857 ∩ cin 3859 ⊆ wss 3860 {csn 4525 ∪ cuni 4801 class class class wbr 5036 dom cdm 5528 “ cima 5531 ⟶wf 6336 ‘cfv 6340 0gc0g 16784 mrClscmrc 16925 Grpcgrp 18182 SubGrpcsubg 18353 Cntzccntz 18525 DProd cdprd 19196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-ixp 8493 df-dprd 19198 |
This theorem is referenced by: dprdfeq0 19225 dprdres 19231 dprdss 19232 dprdf1o 19235 dprd2da 19245 dmdprdsplit2lem 19248 |
Copyright terms: Public domain | W3C validator |