Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprddisj | Structured version Visualization version GIF version |
Description: The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdcntz.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dprddisj.0 | ⊢ 0 = (0g‘𝐺) |
dprddisj.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprddisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) | |
2 | sneq 4571 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | difeq2d 4057 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
4 | 3 | imaeq2d 5969 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋}))) |
5 | 4 | unieqd 4853 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {𝑋}))) |
6 | 5 | fveq2d 6778 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) |
7 | 1, 6 | ineq12d 4147 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))))) |
8 | 7 | eqeq1d 2740 | . 2 ⊢ (𝑥 = 𝑋 → (((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })) |
9 | dprdcntz.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
10 | dprdcntz.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
11 | 9, 10 | dprddomcld 19604 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
12 | eqid 2738 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
13 | dprddisj.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
14 | dprddisj.k | . . . . . . 7 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
15 | 12, 13, 14 | dmdprd 19601 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
16 | 11, 10, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
17 | 9, 16 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
18 | 17 | simp3d 1143 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
19 | simpr 485 | . . . 4 ⊢ ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) | |
20 | 19 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
21 | 18, 20 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
22 | dprdcntz.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
23 | 8, 21, 22 | rspcdva 3562 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 “ cima 5592 ⟶wf 6429 ‘cfv 6433 0gc0g 17150 mrClscmrc 17292 Grpcgrp 18577 SubGrpcsubg 18749 Cntzccntz 18921 DProd cdprd 19596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-ixp 8686 df-dprd 19598 |
This theorem is referenced by: dprdfeq0 19625 dprdres 19631 dprdss 19632 dprdf1o 19635 dprd2da 19645 dmdprdsplit2lem 19648 |
Copyright terms: Public domain | W3C validator |