![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprddisj | Structured version Visualization version GIF version |
Description: The function 𝑆 is a family having trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdcntz.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdcntz.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdcntz.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dprddisj.0 | ⊢ 0 = (0g‘𝐺) |
dprddisj.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
dprddisj | ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6411 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) | |
2 | sneq 4378 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) | |
3 | 2 | difeq2d 3926 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
4 | 3 | imaeq2d 5683 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑆 “ (𝐼 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {𝑋}))) |
5 | 4 | unieqd 4638 | . . . . 5 ⊢ (𝑥 = 𝑋 → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {𝑋}))) |
6 | 5 | fveq2d 6415 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) = (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) |
7 | 1, 6 | ineq12d 4013 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋}))))) |
8 | 7 | eqeq1d 2801 | . 2 ⊢ (𝑥 = 𝑋 → (((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 } ↔ ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 })) |
9 | dprdcntz.1 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
10 | dprdcntz.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
11 | 9, 10 | dprddomcld 18716 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
12 | eqid 2799 | . . . . . . 7 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
13 | dprddisj.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
14 | dprddisj.k | . . . . . . 7 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
15 | 12, 13, 14 | dmdprd 18713 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
16 | 11, 10, 15 | syl2anc 580 | . . . . 5 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
17 | 9, 16 | mpbid 224 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))) |
18 | 17 | simp3d 1175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
19 | simpr 478 | . . . 4 ⊢ ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) | |
20 | 19 | ralimi 3133 | . . 3 ⊢ (∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
21 | 18, 20 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
22 | dprdcntz.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
23 | 8, 21, 22 | rspcdva 3503 | 1 ⊢ (𝜑 → ((𝑆‘𝑋) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑋})))) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 Vcvv 3385 ∖ cdif 3766 ∩ cin 3768 ⊆ wss 3769 {csn 4368 ∪ cuni 4628 class class class wbr 4843 dom cdm 5312 “ cima 5315 ⟶wf 6097 ‘cfv 6101 0gc0g 16415 mrClscmrc 16558 Grpcgrp 17738 SubGrpcsubg 17901 Cntzccntz 18060 DProd cdprd 18708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-ixp 8149 df-dprd 18710 |
This theorem is referenced by: dprdfeq0 18737 dprdres 18743 dprdss 18744 dprdf1o 18747 dprd2da 18757 dmdprdsplit2lem 18760 |
Copyright terms: Public domain | W3C validator |