MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfid Structured version   Visualization version   GIF version

Theorem dprdfid 19929
Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
dprdfid.3 (𝜑𝑋𝐼)
dprdfid.4 (𝜑𝐴 ∈ (𝑆𝑋))
dprdfid.f 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
Assertion
Ref Expression
dprdfid (𝜑 → (𝐹𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴))
Distinct variable groups:   ,𝑛,𝐴   ,𝐹   ,𝑖,𝐺,𝑛   ,𝐼,𝑖,𝑛   𝜑,𝑛   0 ,,𝑛   𝑆,,𝑖,𝑛   ,𝑋,𝑛
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑖)   𝐹(𝑖,𝑛)   𝑊(,𝑖,𝑛)   𝑋(𝑖)   0 (𝑖)

Proof of Theorem dprdfid
StepHypRef Expression
1 dprdfid.f . . 3 𝐹 = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
2 eldprdi.w . . . 4 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
3 eldprdi.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
4 eldprdi.2 . . . 4 (𝜑 → dom 𝑆 = 𝐼)
5 dprdfid.4 . . . . . . 7 (𝜑𝐴 ∈ (𝑆𝑋))
65ad2antrr 726 . . . . . 6 (((𝜑𝑛𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆𝑋))
7 simpr 484 . . . . . . 7 (((𝜑𝑛𝐼) ∧ 𝑛 = 𝑋) → 𝑛 = 𝑋)
87fveq2d 6826 . . . . . 6 (((𝜑𝑛𝐼) ∧ 𝑛 = 𝑋) → (𝑆𝑛) = (𝑆𝑋))
96, 8eleqtrrd 2834 . . . . 5 (((𝜑𝑛𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆𝑛))
103, 4dprdf2 19919 . . . . . . . 8 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1110ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
12 eldprdi.0 . . . . . . . 8 0 = (0g𝐺)
1312subg0cl 19044 . . . . . . 7 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
1411, 13syl 17 . . . . . 6 ((𝜑𝑛𝐼) → 0 ∈ (𝑆𝑛))
1514adantr 480 . . . . 5 (((𝜑𝑛𝐼) ∧ ¬ 𝑛 = 𝑋) → 0 ∈ (𝑆𝑛))
169, 15ifclda 4511 . . . 4 ((𝜑𝑛𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (𝑆𝑛))
173, 4dprddomcld 19913 . . . . 5 (𝜑𝐼 ∈ V)
1812fvexi 6836 . . . . . 6 0 ∈ V
1918a1i 11 . . . . 5 (𝜑0 ∈ V)
20 eqid 2731 . . . . 5 (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 ))
2117, 19, 20sniffsupp 9284 . . . 4 (𝜑 → (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) finSupp 0 )
222, 3, 4, 16, 21dprdwd 19923 . . 3 (𝜑 → (𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ∈ 𝑊)
231, 22eqeltrid 2835 . 2 (𝜑𝐹𝑊)
24 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
25 dprdgrp 19917 . . . . 5 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
26 grpmnd 18850 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
273, 25, 263syl 18 . . . 4 (𝜑𝐺 ∈ Mnd)
28 dprdfid.3 . . . 4 (𝜑𝑋𝐼)
292, 3, 4, 23, 24dprdff 19924 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
301oveq1i 7356 . . . . 5 (𝐹 supp 0 ) = ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 )
31 eldifsni 4742 . . . . . . . 8 (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛𝑋)
3231adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛𝑋)
33 ifnefalse 4487 . . . . . . 7 (𝑛𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
3432, 33syl 17 . . . . . 6 ((𝜑𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 )
3534, 17suppss2 8130 . . . . 5 (𝜑 → ((𝑛𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
3630, 35eqsstrid 3973 . . . 4 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
3724, 12, 27, 17, 28, 29, 36gsumpt 19872 . . 3 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
38 iftrue 4481 . . . 4 (𝑛 = 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 𝐴)
391, 38, 28, 5fvmptd3 6952 . . 3 (𝜑 → (𝐹𝑋) = 𝐴)
4037, 39eqtrd 2766 . 2 (𝜑 → (𝐺 Σg 𝐹) = 𝐴)
4123, 40jca 511 1 (𝜑 → (𝐹𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  cdif 3899  ifcif 4475  {csn 4576   class class class wbr 5091  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346   supp csupp 8090  Xcixp 8821   finSupp cfsupp 9245  Basecbs 17117  0gc0g 17340   Σg cgsu 17341  Mndcmnd 18639  Grpcgrp 18843  SubGrpcsubg 19030   DProd cdprd 19905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-0g 17342  df-gsum 17343  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-mulg 18978  df-subg 19033  df-cntz 19227  df-cmn 19692  df-dprd 19907
This theorem is referenced by:  dprdfeq0  19934  dprdub  19937  dpjrid  19974
  Copyright terms: Public domain W3C validator