| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdfid | Structured version Visualization version GIF version | ||
| Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdfid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| dprdfid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
| dprdfid.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
| Ref | Expression |
|---|---|
| dprdfid | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdfid.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 2 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 4 | eldprdi.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | dprdfid.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆‘𝑋)) |
| 7 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝑛 = 𝑋) | |
| 8 | 7 | fveq2d 6826 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → (𝑆‘𝑛) = (𝑆‘𝑋)) |
| 9 | 6, 8 | eleqtrrd 2834 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆‘𝑛)) |
| 10 | 3, 4 | dprdf2 19919 | . . . . . . . 8 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 11 | 10 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑆‘𝑛) ∈ (SubGrp‘𝐺)) |
| 12 | eldprdi.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 13 | 12 | subg0cl 19044 | . . . . . . 7 ⊢ ((𝑆‘𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑛)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈ (𝑆‘𝑛)) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ ¬ 𝑛 = 𝑋) → 0 ∈ (𝑆‘𝑛)) |
| 16 | 9, 15 | ifclda 4511 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (𝑆‘𝑛)) |
| 17 | 3, 4 | dprddomcld 19913 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 18 | 12 | fvexi 6836 | . . . . . 6 ⊢ 0 ∈ V |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 20 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 21 | 17, 19, 20 | sniffsupp 9284 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
| 22 | 2, 3, 4, 16, 21 | dprdwd 19923 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ∈ 𝑊) |
| 23 | 1, 22 | eqeltrid 2835 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 24 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 25 | dprdgrp 19917 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 26 | grpmnd 18850 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 27 | 3, 25, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 28 | dprdfid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 29 | 2, 3, 4, 23, 24 | dprdff 19924 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 30 | 1 | oveq1i 7356 | . . . . 5 ⊢ (𝐹 supp 0 ) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) |
| 31 | eldifsni 4742 | . . . . . . . 8 ⊢ (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛 ≠ 𝑋) | |
| 32 | 31 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛 ≠ 𝑋) |
| 33 | ifnefalse 4487 | . . . . . . 7 ⊢ (𝑛 ≠ 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) | |
| 34 | 32, 33 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) |
| 35 | 34, 17 | suppss2 8130 | . . . . 5 ⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 36 | 30, 35 | eqsstrid 3973 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) |
| 37 | 24, 12, 27, 17, 28, 29, 36 | gsumpt 19872 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) |
| 38 | iftrue 4481 | . . . 4 ⊢ (𝑛 = 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 𝐴) | |
| 39 | 1, 38, 28, 5 | fvmptd3 6952 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = 𝐴) |
| 40 | 37, 39 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) |
| 41 | 23, 40 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ∖ cdif 3899 ifcif 4475 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 Xcixp 8821 finSupp cfsupp 9245 Basecbs 17117 0gc0g 17340 Σg cgsu 17341 Mndcmnd 18639 Grpcgrp 18843 SubGrpcsubg 19030 DProd cdprd 19905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-mulg 18978 df-subg 19033 df-cntz 19227 df-cmn 19692 df-dprd 19907 |
| This theorem is referenced by: dprdfeq0 19934 dprdub 19937 dpjrid 19974 |
| Copyright terms: Public domain | W3C validator |