| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdfid | Structured version Visualization version GIF version | ||
| Description: A function mapping all but one arguments to zero sums to the value of this argument in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdfid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| dprdfid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
| dprdfid.f | ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) |
| Ref | Expression |
|---|---|
| dprdfid | ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdfid.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 2 | eldprdi.w | . . . 4 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | . . . 4 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 4 | eldprdi.2 | . . . 4 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 5 | dprdfid.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
| 6 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆‘𝑋)) |
| 7 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝑛 = 𝑋) | |
| 8 | 7 | fveq2d 6865 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → (𝑆‘𝑛) = (𝑆‘𝑋)) |
| 9 | 6, 8 | eleqtrrd 2832 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑛 = 𝑋) → 𝐴 ∈ (𝑆‘𝑛)) |
| 10 | 3, 4 | dprdf2 19946 | . . . . . . . 8 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 11 | 10 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑆‘𝑛) ∈ (SubGrp‘𝐺)) |
| 12 | eldprdi.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 13 | 12 | subg0cl 19073 | . . . . . . 7 ⊢ ((𝑆‘𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑛)) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 0 ∈ (𝑆‘𝑛)) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ ¬ 𝑛 = 𝑋) → 0 ∈ (𝑆‘𝑛)) |
| 16 | 9, 15 | ifclda 4527 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → if(𝑛 = 𝑋, 𝐴, 0 ) ∈ (𝑆‘𝑛)) |
| 17 | 3, 4 | dprddomcld 19940 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 18 | 12 | fvexi 6875 | . . . . . 6 ⊢ 0 ∈ V |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 20 | eqid 2730 | . . . . 5 ⊢ (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) = (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) | |
| 21 | 17, 19, 20 | sniffsupp 9358 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
| 22 | 2, 3, 4, 16, 21 | dprdwd 19950 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) ∈ 𝑊) |
| 23 | 1, 22 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 24 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 25 | dprdgrp 19944 | . . . . 5 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 26 | grpmnd 18879 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 27 | 3, 25, 26 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 28 | dprdfid.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 29 | 2, 3, 4, 23, 24 | dprdff 19951 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 30 | 1 | oveq1i 7400 | . . . . 5 ⊢ (𝐹 supp 0 ) = ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) |
| 31 | eldifsni 4757 | . . . . . . . 8 ⊢ (𝑛 ∈ (𝐼 ∖ {𝑋}) → 𝑛 ≠ 𝑋) | |
| 32 | 31 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → 𝑛 ≠ 𝑋) |
| 33 | ifnefalse 4503 | . . . . . . 7 ⊢ (𝑛 ≠ 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) | |
| 34 | 32, 33 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐼 ∖ {𝑋})) → if(𝑛 = 𝑋, 𝐴, 0 ) = 0 ) |
| 35 | 34, 17 | suppss2 8182 | . . . . 5 ⊢ (𝜑 → ((𝑛 ∈ 𝐼 ↦ if(𝑛 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 36 | 30, 35 | eqsstrid 3988 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋}) |
| 37 | 24, 12, 27, 17, 28, 29, 36 | gsumpt 19899 | . . 3 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐹‘𝑋)) |
| 38 | iftrue 4497 | . . . 4 ⊢ (𝑛 = 𝑋 → if(𝑛 = 𝑋, 𝐴, 0 ) = 𝐴) | |
| 39 | 1, 38, 28, 5 | fvmptd3 6994 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = 𝐴) |
| 40 | 37, 39 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 𝐴) |
| 41 | 23, 40 | jca 511 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ (𝐺 Σg 𝐹) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ∖ cdif 3914 ifcif 4491 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 Xcixp 8873 finSupp cfsupp 9319 Basecbs 17186 0gc0g 17409 Σg cgsu 17410 Mndcmnd 18668 Grpcgrp 18872 SubGrpcsubg 19059 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-dprd 19934 |
| This theorem is referenced by: dprdfeq0 19961 dprdub 19964 dpjrid 20001 |
| Copyright terms: Public domain | W3C validator |