MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   GIF version

Theorem dprdfinv 20002
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfinv.b 𝑁 = (invg𝐺)
Assertion
Ref Expression
dprdfinv (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   ,𝑁   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑁(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 19988 . . . . . 6 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2735 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
5 dprdfinv.b . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvf 18969 . . . . 5 (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺))
73, 6syl 17 . . . 4 (𝜑𝑁:(Base‘𝐺)⟶(Base‘𝐺))
8 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
9 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
10 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
118, 1, 9, 10, 4dprdff 19995 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
12 fcompt 7123 . . . 4 ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
137, 11, 12syl2anc 584 . . 3 (𝜑 → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
141, 9dprdf2 19990 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1514ffvelcdmda 7074 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
168, 1, 9, 10dprdfcl 19996 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
175subginvcl 19118 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥)) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
1815, 16, 17syl2anc 584 . . . 4 ((𝜑𝑥𝐼) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
191, 9dprddomcld 19984 . . . . . 6 (𝜑𝐼 ∈ V)
2019mptexd 7216 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
21 funmpt 6574 . . . . . 6 Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))
2221a1i 11 . . . . 5 (𝜑 → Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
238, 1, 9, 10dprdffsupp 19997 . . . . 5 (𝜑𝐹 finSupp 0 )
24 ssidd 3982 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
25 eldprdi.0 . . . . . . . . . . 11 0 = (0g𝐺)
2625fvexi 6890 . . . . . . . . . 10 0 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
2811, 24, 19, 27suppssr 8194 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹𝑥) = 0 )
2928fveq2d 6880 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = (𝑁0 ))
3025, 5grpinvid 18982 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝑁0 ) = 0 )
3231adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁0 ) = 0 )
3329, 32eqtrd 2770 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = 0 )
3433, 19suppss2 8199 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))
35 fsuppsssupp 9393 . . . . 5 ((((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V ∧ Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
3620, 22, 23, 34, 35syl22anc 838 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
378, 1, 9, 18, 36dprdwd 19994 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ 𝑊)
3813, 37eqeltrd 2834 . 2 (𝜑 → (𝑁𝐹) ∈ 𝑊)
39 eqid 2735 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
408, 1, 9, 10, 39dprdfcntz 19998 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
414, 25, 39, 5, 3, 19, 11, 40, 23gsumzinv 19926 . 2 (𝜑 → (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))
4238, 41jca 511 1 (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cdif 3923  wss 3926   class class class wbr 5119  cmpt 5201  dom cdm 5654  ccom 5658  Fun wfun 6525  wf 6527  cfv 6531  (class class class)co 7405   supp csupp 8159  Xcixp 8911   finSupp cfsupp 9373  Basecbs 17228  0gc0g 17453   Σg cgsu 17454  Grpcgrp 18916  invgcminusg 18917  SubGrpcsubg 19103  Cntzccntz 19298   DProd cdprd 19976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-cmn 19763  df-dprd 19978
This theorem is referenced by:  dprdfsub  20004
  Copyright terms: Public domain W3C validator