MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   GIF version

Theorem dprdfinv 19935
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfinv.b 𝑁 = (invg𝐺)
Assertion
Ref Expression
dprdfinv (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   ,𝑁   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑁(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 19921 . . . . . 6 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2733 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
5 dprdfinv.b . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvf 18901 . . . . 5 (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺))
73, 6syl 17 . . . 4 (𝜑𝑁:(Base‘𝐺)⟶(Base‘𝐺))
8 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
9 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
10 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
118, 1, 9, 10, 4dprdff 19928 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
12 fcompt 7072 . . . 4 ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
137, 11, 12syl2anc 584 . . 3 (𝜑 → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
141, 9dprdf2 19923 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1514ffvelcdmda 7023 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
168, 1, 9, 10dprdfcl 19929 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
175subginvcl 19050 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥)) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
1815, 16, 17syl2anc 584 . . . 4 ((𝜑𝑥𝐼) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
191, 9dprddomcld 19917 . . . . . 6 (𝜑𝐼 ∈ V)
2019mptexd 7164 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
21 funmpt 6524 . . . . . 6 Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))
2221a1i 11 . . . . 5 (𝜑 → Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
238, 1, 9, 10dprdffsupp 19930 . . . . 5 (𝜑𝐹 finSupp 0 )
24 ssidd 3954 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
25 eldprdi.0 . . . . . . . . . . 11 0 = (0g𝐺)
2625fvexi 6842 . . . . . . . . . 10 0 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
2811, 24, 19, 27suppssr 8131 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹𝑥) = 0 )
2928fveq2d 6832 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = (𝑁0 ))
3025, 5grpinvid 18914 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝑁0 ) = 0 )
3231adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁0 ) = 0 )
3329, 32eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = 0 )
3433, 19suppss2 8136 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))
35 fsuppsssupp 9272 . . . . 5 ((((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V ∧ Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
3620, 22, 23, 34, 35syl22anc 838 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
378, 1, 9, 18, 36dprdwd 19927 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ 𝑊)
3813, 37eqeltrd 2833 . 2 (𝜑 → (𝑁𝐹) ∈ 𝑊)
39 eqid 2733 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
408, 1, 9, 10, 39dprdfcntz 19931 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
414, 25, 39, 5, 3, 19, 11, 40, 23gsumzinv 19859 . 2 (𝜑 → (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))
4238, 41jca 511 1 (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  wss 3898   class class class wbr 5093  cmpt 5174  dom cdm 5619  ccom 5623  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7352   supp csupp 8096  Xcixp 8827   finSupp cfsupp 9252  Basecbs 17122  0gc0g 17345   Σg cgsu 17346  Grpcgrp 18848  invgcminusg 18849  SubGrpcsubg 19035  Cntzccntz 19229   DProd cdprd 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-subg 19038  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-cmn 19696  df-dprd 19911
This theorem is referenced by:  dprdfsub  19937
  Copyright terms: Public domain W3C validator