MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   GIF version

Theorem dprdfinv 19622
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfinv.b 𝑁 = (invg𝐺)
Assertion
Ref Expression
dprdfinv (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   ,𝑁   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑁(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 19608 . . . . . 6 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
5 dprdfinv.b . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvf 18626 . . . . 5 (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺))
73, 6syl 17 . . . 4 (𝜑𝑁:(Base‘𝐺)⟶(Base‘𝐺))
8 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
9 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
10 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
118, 1, 9, 10, 4dprdff 19615 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
12 fcompt 7005 . . . 4 ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
137, 11, 12syl2anc 584 . . 3 (𝜑 → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
141, 9dprdf2 19610 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1514ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
168, 1, 9, 10dprdfcl 19616 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
175subginvcl 18764 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥)) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
1815, 16, 17syl2anc 584 . . . 4 ((𝜑𝑥𝐼) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
191, 9dprddomcld 19604 . . . . . 6 (𝜑𝐼 ∈ V)
2019mptexd 7100 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
21 funmpt 6472 . . . . . 6 Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))
2221a1i 11 . . . . 5 (𝜑 → Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
238, 1, 9, 10dprdffsupp 19617 . . . . 5 (𝜑𝐹 finSupp 0 )
24 ssidd 3944 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
25 eldprdi.0 . . . . . . . . . . 11 0 = (0g𝐺)
2625fvexi 6788 . . . . . . . . . 10 0 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
2811, 24, 19, 27suppssr 8012 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹𝑥) = 0 )
2928fveq2d 6778 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = (𝑁0 ))
3025, 5grpinvid 18636 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝑁0 ) = 0 )
3231adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁0 ) = 0 )
3329, 32eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = 0 )
3433, 19suppss2 8016 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))
35 fsuppsssupp 9144 . . . . 5 ((((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V ∧ Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
3620, 22, 23, 34, 35syl22anc 836 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
378, 1, 9, 18, 36dprdwd 19614 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ 𝑊)
3813, 37eqeltrd 2839 . 2 (𝜑 → (𝑁𝐹) ∈ 𝑊)
39 eqid 2738 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
408, 1, 9, 10, 39dprdfcntz 19618 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
414, 25, 39, 5, 3, 19, 11, 40, 23gsumzinv 19546 . 2 (𝜑 → (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))
4238, 41jca 512 1 (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275   supp csupp 7977  Xcixp 8685   finSupp cfsupp 9128  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  Cntzccntz 18921   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-cmn 19388  df-dprd 19598
This theorem is referenced by:  dprdfsub  19624
  Copyright terms: Public domain W3C validator