MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   GIF version

Theorem dprdfinv 18772
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfinv.b 𝑁 = (invg𝐺)
Assertion
Ref Expression
dprdfinv (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   ,𝑁   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑁(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 18758 . . . . . 6 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2825 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
5 dprdfinv.b . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvf 17820 . . . . 5 (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺))
73, 6syl 17 . . . 4 (𝜑𝑁:(Base‘𝐺)⟶(Base‘𝐺))
8 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
9 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
10 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
118, 1, 9, 10, 4dprdff 18765 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
12 fcompt 6650 . . . 4 ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
137, 11, 12syl2anc 581 . . 3 (𝜑 → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
141, 9dprdf2 18760 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1514ffvelrnda 6608 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
168, 1, 9, 10dprdfcl 18766 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
175subginvcl 17954 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥)) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
1815, 16, 17syl2anc 581 . . . 4 ((𝜑𝑥𝐼) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
191, 9dprddomcld 18754 . . . . . 6 (𝜑𝐼 ∈ V)
20 mptexg 6740 . . . . . 6 (𝐼 ∈ V → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
2119, 20syl 17 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
22 funmpt 6161 . . . . . 6 Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))
2322a1i 11 . . . . 5 (𝜑 → Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
248, 1, 9, 10dprdffsupp 18767 . . . . 5 (𝜑𝐹 finSupp 0 )
25 ssidd 3849 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
26 eldprdi.0 . . . . . . . . . . 11 0 = (0g𝐺)
2726fvexi 6447 . . . . . . . . . 10 0 ∈ V
2827a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
2911, 25, 19, 28suppssr 7591 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹𝑥) = 0 )
3029fveq2d 6437 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = (𝑁0 ))
3126, 5grpinvid 17830 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
323, 31syl 17 . . . . . . . 8 (𝜑 → (𝑁0 ) = 0 )
3332adantr 474 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁0 ) = 0 )
3430, 33eqtrd 2861 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = 0 )
3534, 19suppss2 7594 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))
36 fsuppsssupp 8560 . . . . 5 ((((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V ∧ Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
3721, 23, 24, 35, 36syl22anc 874 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
388, 1, 9, 18, 37dprdwd 18764 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ 𝑊)
3913, 38eqeltrd 2906 . 2 (𝜑 → (𝑁𝐹) ∈ 𝑊)
40 eqid 2825 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
418, 1, 9, 10, 40dprdfcntz 18768 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
424, 26, 40, 5, 3, 19, 11, 41, 24gsumzinv 18698 . 2 (𝜑 → (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))
4339, 42jca 509 1 (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {crab 3121  Vcvv 3414  cdif 3795  wss 3798   class class class wbr 4873  cmpt 4952  dom cdm 5342  ccom 5346  Fun wfun 6117  wf 6119  cfv 6123  (class class class)co 6905   supp csupp 7559  Xcixp 8175   finSupp cfsupp 8544  Basecbs 16222  0gc0g 16453   Σg cgsu 16454  Grpcgrp 17776  invgcminusg 17777  SubGrpcsubg 17939  Cntzccntz 18098   DProd cdprd 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-subg 17942  df-ghm 18009  df-gim 18052  df-cntz 18100  df-oppg 18126  df-cmn 18548  df-dprd 18748
This theorem is referenced by:  dprdfsub  18774
  Copyright terms: Public domain W3C validator