MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfinv Structured version   Visualization version   GIF version

Theorem dprdfinv 20019
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfinv.b 𝑁 = (invg𝐺)
Assertion
Ref Expression
dprdfinv (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Distinct variable groups:   ,𝐹   ,𝑖,𝐺   ,𝐼,𝑖   ,𝑁   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑁(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
2 dprdgrp 20005 . . . . . 6 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝜑𝐺 ∈ Grp)
4 eqid 2726 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
5 dprdfinv.b . . . . . 6 𝑁 = (invg𝐺)
64, 5grpinvf 18981 . . . . 5 (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺))
73, 6syl 17 . . . 4 (𝜑𝑁:(Base‘𝐺)⟶(Base‘𝐺))
8 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
9 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
10 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
118, 1, 9, 10, 4dprdff 20012 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝐺))
12 fcompt 7147 . . . 4 ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
137, 11, 12syl2anc 582 . . 3 (𝜑 → (𝑁𝐹) = (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
141, 9dprdf2 20007 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1514ffvelcdmda 7098 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
168, 1, 9, 10dprdfcl 20013 . . . . 5 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
175subginvcl 19129 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥)) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
1815, 16, 17syl2anc 582 . . . 4 ((𝜑𝑥𝐼) → (𝑁‘(𝐹𝑥)) ∈ (𝑆𝑥))
191, 9dprddomcld 20001 . . . . . 6 (𝜑𝐼 ∈ V)
2019mptexd 7241 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V)
21 funmpt 6597 . . . . . 6 Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))
2221a1i 11 . . . . 5 (𝜑 → Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))))
238, 1, 9, 10dprdffsupp 20014 . . . . 5 (𝜑𝐹 finSupp 0 )
24 ssidd 4003 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
25 eldprdi.0 . . . . . . . . . . 11 0 = (0g𝐺)
2625fvexi 6915 . . . . . . . . . 10 0 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
2811, 24, 19, 27suppssr 8210 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹𝑥) = 0 )
2928fveq2d 6905 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = (𝑁0 ))
3025, 5grpinvid 18994 . . . . . . . . 9 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
313, 30syl 17 . . . . . . . 8 (𝜑 → (𝑁0 ) = 0 )
3231adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁0 ) = 0 )
3329, 32eqtrd 2766 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹𝑥)) = 0 )
3433, 19suppss2 8215 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))
35 fsuppsssupp 9424 . . . . 5 ((((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ V ∧ Fun (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
3620, 22, 23, 34, 35syl22anc 837 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) finSupp 0 )
378, 1, 9, 18, 36dprdwd 20011 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑁‘(𝐹𝑥))) ∈ 𝑊)
3813, 37eqeltrd 2826 . 2 (𝜑 → (𝑁𝐹) ∈ 𝑊)
39 eqid 2726 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
408, 1, 9, 10, 39dprdfcntz 20015 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
414, 25, 39, 5, 3, 19, 11, 40, 23gsumzinv 19943 . 2 (𝜑 → (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))
4238, 41jca 510 1 (𝜑 → ((𝑁𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁𝐹)) = (𝑁‘(𝐺 Σg 𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  cdif 3944  wss 3947   class class class wbr 5153  cmpt 5236  dom cdm 5682  ccom 5686  Fun wfun 6548  wf 6550  cfv 6554  (class class class)co 7424   supp csupp 8174  Xcixp 8926   finSupp cfsupp 9405  Basecbs 17213  0gc0g 17454   Σg cgsu 17455  Grpcgrp 18928  invgcminusg 18929  SubGrpcsubg 19114  Cntzccntz 19309   DProd cdprd 19993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-0g 17456  df-gsum 17457  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-subg 19117  df-ghm 19207  df-gim 19253  df-cntz 19311  df-oppg 19340  df-cmn 19780  df-dprd 19995
This theorem is referenced by:  dprdfsub  20021
  Copyright terms: Public domain W3C validator