![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprdfinv | Structured version Visualization version GIF version |
Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
Ref | Expression |
---|---|
eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
dprdfinv.b | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
dprdfinv | ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.1 | . . . . . 6 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dprdgrp 18758 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
4 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | dprdfinv.b | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
6 | 4, 5 | grpinvf 17820 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺)) |
7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁:(Base‘𝐺)⟶(Base‘𝐺)) |
8 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
9 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
10 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
11 | 8, 1, 9, 10, 4 | dprdff 18765 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
12 | fcompt 6650 | . . . 4 ⊢ ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁 ∘ 𝐹) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) | |
13 | 7, 11, 12 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝐹) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) |
14 | 1, 9 | dprdf2 18760 | . . . . . 6 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
15 | 14 | ffvelrnda 6608 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
16 | 8, 1, 9, 10 | dprdfcl 18766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
17 | 5 | subginvcl 17954 | . . . . 5 ⊢ (((𝑆‘𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → (𝑁‘(𝐹‘𝑥)) ∈ (𝑆‘𝑥)) |
18 | 15, 16, 17 | syl2anc 581 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝐹‘𝑥)) ∈ (𝑆‘𝑥)) |
19 | 1, 9 | dprddomcld 18754 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
20 | mptexg 6740 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ V) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ V) |
22 | funmpt 6161 | . . . . . 6 ⊢ Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) | |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) |
24 | 8, 1, 9, 10 | dprdffsupp 18767 | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
25 | ssidd 3849 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
26 | eldprdi.0 | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝐺) | |
27 | 26 | fvexi 6447 | . . . . . . . . . 10 ⊢ 0 ∈ V |
28 | 27 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ V) |
29 | 11, 25, 19, 28 | suppssr 7591 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹‘𝑥) = 0 ) |
30 | 29 | fveq2d 6437 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹‘𝑥)) = (𝑁‘ 0 )) |
31 | 26, 5 | grpinvid 17830 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
32 | 3, 31 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘ 0 ) = 0 ) |
33 | 32 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘ 0 ) = 0 ) |
34 | 30, 33 | eqtrd 2861 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹‘𝑥)) = 0 ) |
35 | 34, 19 | suppss2 7594 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) supp 0 ) ⊆ (𝐹 supp 0 )) |
36 | fsuppsssupp 8560 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ V ∧ Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) finSupp 0 ) | |
37 | 21, 23, 24, 35, 36 | syl22anc 874 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) finSupp 0 ) |
38 | 8, 1, 9, 18, 37 | dprdwd 18764 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ 𝑊) |
39 | 13, 38 | eqeltrd 2906 | . 2 ⊢ (𝜑 → (𝑁 ∘ 𝐹) ∈ 𝑊) |
40 | eqid 2825 | . . 3 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
41 | 8, 1, 9, 10, 40 | dprdfcntz 18768 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
42 | 4, 26, 40, 5, 3, 19, 11, 41, 24 | gsumzinv 18698 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹))) |
43 | 39, 42 | jca 509 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3121 Vcvv 3414 ∖ cdif 3795 ⊆ wss 3798 class class class wbr 4873 ↦ cmpt 4952 dom cdm 5342 ∘ ccom 5346 Fun wfun 6117 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 supp csupp 7559 Xcixp 8175 finSupp cfsupp 8544 Basecbs 16222 0gc0g 16453 Σg cgsu 16454 Grpcgrp 17776 invgcminusg 17777 SubGrpcsubg 17939 Cntzccntz 18098 DProd cdprd 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-tpos 7617 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-seq 13096 df-hash 13411 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-0g 16455 df-gsum 16456 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-subg 17942 df-ghm 18009 df-gim 18052 df-cntz 18100 df-oppg 18126 df-cmn 18548 df-dprd 18748 |
This theorem is referenced by: dprdfsub 18774 |
Copyright terms: Public domain | W3C validator |