| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdfinv | Structured version Visualization version GIF version | ||
| Description: Take the inverse of a group sum over a family of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.) |
| Ref | Expression |
|---|---|
| eldprdi.0 | ⊢ 0 = (0g‘𝐺) |
| eldprdi.w | ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| eldprdi.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| eldprdi.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| eldprdi.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| dprdfinv.b | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| dprdfinv | ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.1 | . . . . . 6 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdgrp 19921 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 4 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | dprdfinv.b | . . . . . 6 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 4, 5 | grpinvf 18901 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑁:(Base‘𝐺)⟶(Base‘𝐺)) |
| 7 | 3, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁:(Base‘𝐺)⟶(Base‘𝐺)) |
| 8 | eldprdi.w | . . . . 5 ⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
| 9 | eldprdi.2 | . . . . 5 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 10 | eldprdi.3 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 11 | 8, 1, 9, 10, 4 | dprdff 19928 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 12 | fcompt 7072 | . . . 4 ⊢ ((𝑁:(Base‘𝐺)⟶(Base‘𝐺) ∧ 𝐹:𝐼⟶(Base‘𝐺)) → (𝑁 ∘ 𝐹) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) | |
| 13 | 7, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝐹) = (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) |
| 14 | 1, 9 | dprdf2 19923 | . . . . . 6 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 15 | 14 | ffvelcdmda 7023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
| 16 | 8, 1, 9, 10 | dprdfcl 19929 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 17 | 5 | subginvcl 19050 | . . . . 5 ⊢ (((𝑆‘𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹‘𝑥) ∈ (𝑆‘𝑥)) → (𝑁‘(𝐹‘𝑥)) ∈ (𝑆‘𝑥)) |
| 18 | 15, 16, 17 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑁‘(𝐹‘𝑥)) ∈ (𝑆‘𝑥)) |
| 19 | 1, 9 | dprddomcld 19917 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 20 | 19 | mptexd 7164 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ V) |
| 21 | funmpt 6524 | . . . . . 6 ⊢ Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) |
| 23 | 8, 1, 9, 10 | dprdffsupp 19930 | . . . . 5 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 24 | ssidd 3954 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) | |
| 25 | eldprdi.0 | . . . . . . . . . . 11 ⊢ 0 = (0g‘𝐺) | |
| 26 | 25 | fvexi 6842 | . . . . . . . . . 10 ⊢ 0 ∈ V |
| 27 | 26 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ V) |
| 28 | 11, 24, 19, 27 | suppssr 8131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝐹‘𝑥) = 0 ) |
| 29 | 28 | fveq2d 6832 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹‘𝑥)) = (𝑁‘ 0 )) |
| 30 | 25, 5 | grpinvid 18914 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| 31 | 3, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘ 0 ) = 0 ) |
| 32 | 31 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘ 0 ) = 0 ) |
| 33 | 29, 32 | eqtrd 2768 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 supp 0 ))) → (𝑁‘(𝐹‘𝑥)) = 0 ) |
| 34 | 33, 19 | suppss2 8136 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) supp 0 ) ⊆ (𝐹 supp 0 )) |
| 35 | fsuppsssupp 9272 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ V ∧ Fun (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥)))) ∧ (𝐹 finSupp 0 ∧ ((𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) supp 0 ) ⊆ (𝐹 supp 0 ))) → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) finSupp 0 ) | |
| 36 | 20, 22, 23, 34, 35 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) finSupp 0 ) |
| 37 | 8, 1, 9, 18, 36 | dprdwd 19927 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑁‘(𝐹‘𝑥))) ∈ 𝑊) |
| 38 | 13, 37 | eqeltrd 2833 | . 2 ⊢ (𝜑 → (𝑁 ∘ 𝐹) ∈ 𝑊) |
| 39 | eqid 2733 | . . 3 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 40 | 8, 1, 9, 10, 39 | dprdfcntz 19931 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
| 41 | 4, 25, 39, 5, 3, 19, 11, 40, 23 | gsumzinv 19859 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹))) |
| 42 | 38, 41 | jca 511 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝐹) ∈ 𝑊 ∧ (𝐺 Σg (𝑁 ∘ 𝐹)) = (𝑁‘(𝐺 Σg 𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 ∘ ccom 5623 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 supp csupp 8096 Xcixp 8827 finSupp cfsupp 9252 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 Grpcgrp 18848 invgcminusg 18849 SubGrpcsubg 19035 Cntzccntz 19229 DProd cdprd 19909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-subg 19038 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-cmn 19696 df-dprd 19911 |
| This theorem is referenced by: dprdfsub 19937 |
| Copyright terms: Public domain | W3C validator |