MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfsub Structured version   Visualization version   GIF version

Theorem dprdfsub 19932
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfsub.b = (-g𝐺)
Assertion
Ref Expression
dprdfsub (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   (,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . . 8 (𝜑𝐹𝑊)
5 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19923 . . . . . . 7 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffvelcdmda 7085 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
8 dprdfadd.4 . . . . . . . 8 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19923 . . . . . . 7 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffvelcdmda 7085 . . . . . 6 ((𝜑𝑘𝐼) → (𝐻𝑘) ∈ (Base‘𝐺))
11 eqid 2730 . . . . . . 7 (+g𝐺) = (+g𝐺)
12 eqid 2730 . . . . . . 7 (invg𝐺) = (invg𝐺)
13 dprdfsub.b . . . . . . 7 = (-g𝐺)
145, 11, 12, 13grpsubval 18906 . . . . . 6 (((𝐹𝑘) ∈ (Base‘𝐺) ∧ (𝐻𝑘) ∈ (Base‘𝐺)) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
157, 10, 14syl2anc 582 . . . . 5 ((𝜑𝑘𝐼) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
1615mpteq2dva 5247 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
172, 3dprddomcld 19912 . . . . 5 (𝜑𝐼 ∈ V)
186feqmptd 6959 . . . . 5 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
199feqmptd 6959 . . . . 5 (𝜑𝐻 = (𝑘𝐼 ↦ (𝐻𝑘)))
2017, 7, 10, 18, 19offval2 7692 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))))
21 fvexd 6905 . . . . 5 ((𝜑𝑘𝐼) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
22 dprdgrp 19916 . . . . . . . . . 10 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
232, 22syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
245, 12, 23grpinvf1o 18929 . . . . . . . 8 (𝜑 → (invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺))
25 f1of 6832 . . . . . . . 8 ((invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2624, 25syl 17 . . . . . . 7 (𝜑 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2726feqmptd 6959 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
28 fveq2 6890 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
2910, 19, 27, 28fmptco 7128 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐼 ↦ ((invg𝐺)‘(𝐻𝑘))))
3017, 7, 21, 18, 29offval2 7692 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
3116, 20, 303eqtr4d 2780 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
32 eldprdi.0 . . . . 5 0 = (0g𝐺)
3332, 1, 2, 3, 8, 12dprdfinv 19930 . . . . . 6 (𝜑 → (((invg𝐺) ∘ 𝐻) ∈ 𝑊 ∧ (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻))))
3433simpld 493 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) ∈ 𝑊)
3532, 1, 2, 3, 4, 34, 11dprdfadd 19931 . . . 4 (𝜑 → ((𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻)))))
3635simpld 493 . . 3 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊)
3731, 36eqeltrd 2831 . 2 (𝜑 → (𝐹f 𝐻) ∈ 𝑊)
3831oveq2d 7427 . . 3 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
3933simprd 494 . . . . 5 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
4039oveq2d 7427 . . . 4 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4135simprd 494 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
425dprdssv 19927 . . . . . 6 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4332, 1, 2, 3, 4eldprdi 19929 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3979 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4532, 1, 2, 3, 8eldprdi 19929 . . . . . 6 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3979 . . . . 5 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 11, 12, 13grpsubval 18906 . . . . 5 (((𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4844, 46, 47syl2anc 582 . . . 4 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4940, 41, 483eqtr4d 2780 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5038, 49eqtrd 2770 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5137, 50jca 510 1 (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  {crab 3430  Vcvv 3472   class class class wbr 5147  cmpt 5230  dom cdm 5675  ccom 5679  wf 6538  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7411  f cof 7670  Xcixp 8893   finSupp cfsupp 9363  Basecbs 17148  +gcplusg 17201  0gc0g 17389   Σg cgsu 17390  Grpcgrp 18855  invgcminusg 18856  -gcsg 18857   DProd cdprd 19904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-ghm 19128  df-gim 19173  df-cntz 19222  df-oppg 19251  df-cmn 19691  df-dprd 19906
This theorem is referenced by:  dprdfeq0  19933  dprdf11  19934  dprdsubg  19935
  Copyright terms: Public domain W3C validator