MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfsub Structured version   Visualization version   GIF version

Theorem dprdfsub 19935
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfsub.b = (-g𝐺)
Assertion
Ref Expression
dprdfsub (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   (,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . . 8 (𝜑𝐹𝑊)
5 eqid 2731 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19926 . . . . . . 7 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
8 dprdfadd.4 . . . . . . . 8 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19926 . . . . . . 7 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffvelcdmda 7017 . . . . . 6 ((𝜑𝑘𝐼) → (𝐻𝑘) ∈ (Base‘𝐺))
11 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
12 eqid 2731 . . . . . . 7 (invg𝐺) = (invg𝐺)
13 dprdfsub.b . . . . . . 7 = (-g𝐺)
145, 11, 12, 13grpsubval 18898 . . . . . 6 (((𝐹𝑘) ∈ (Base‘𝐺) ∧ (𝐻𝑘) ∈ (Base‘𝐺)) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
157, 10, 14syl2anc 584 . . . . 5 ((𝜑𝑘𝐼) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
1615mpteq2dva 5182 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
172, 3dprddomcld 19915 . . . . 5 (𝜑𝐼 ∈ V)
186feqmptd 6890 . . . . 5 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
199feqmptd 6890 . . . . 5 (𝜑𝐻 = (𝑘𝐼 ↦ (𝐻𝑘)))
2017, 7, 10, 18, 19offval2 7630 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))))
21 fvexd 6837 . . . . 5 ((𝜑𝑘𝐼) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
22 dprdgrp 19919 . . . . . . . . . 10 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
232, 22syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
245, 12, 23grpinvf1o 18922 . . . . . . . 8 (𝜑 → (invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺))
25 f1of 6763 . . . . . . . 8 ((invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2624, 25syl 17 . . . . . . 7 (𝜑 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2726feqmptd 6890 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
28 fveq2 6822 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
2910, 19, 27, 28fmptco 7062 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐼 ↦ ((invg𝐺)‘(𝐻𝑘))))
3017, 7, 21, 18, 29offval2 7630 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
3116, 20, 303eqtr4d 2776 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
32 eldprdi.0 . . . . 5 0 = (0g𝐺)
3332, 1, 2, 3, 8, 12dprdfinv 19933 . . . . . 6 (𝜑 → (((invg𝐺) ∘ 𝐻) ∈ 𝑊 ∧ (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻))))
3433simpld 494 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) ∈ 𝑊)
3532, 1, 2, 3, 4, 34, 11dprdfadd 19934 . . . 4 (𝜑 → ((𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻)))))
3635simpld 494 . . 3 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊)
3731, 36eqeltrd 2831 . 2 (𝜑 → (𝐹f 𝐻) ∈ 𝑊)
3831oveq2d 7362 . . 3 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
3933simprd 495 . . . . 5 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
4039oveq2d 7362 . . . 4 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4135simprd 495 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
425dprdssv 19930 . . . . . 6 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4332, 1, 2, 3, 4eldprdi 19932 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3927 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4532, 1, 2, 3, 8eldprdi 19932 . . . . . 6 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3927 . . . . 5 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 11, 12, 13grpsubval 18898 . . . . 5 (((𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4844, 46, 47syl2anc 584 . . . 4 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4940, 41, 483eqtr4d 2776 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5038, 49eqtrd 2766 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5137, 50jca 511 1 (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436   class class class wbr 5089  cmpt 5170  dom cdm 5614  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  f cof 7608  Xcixp 8821   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Grpcgrp 18846  invgcminusg 18847  -gcsg 18848   DProd cdprd 19907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-cmn 19694  df-dprd 19909
This theorem is referenced by:  dprdfeq0  19936  dprdf11  19937  dprdsubg  19938
  Copyright terms: Public domain W3C validator