MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfsub Structured version   Visualization version   GIF version

Theorem dprdfsub 19539
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfsub.b = (-g𝐺)
Assertion
Ref Expression
dprdfsub (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   (,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . . 8 (𝜑𝐹𝑊)
5 eqid 2738 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19530 . . . . . . 7 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
8 dprdfadd.4 . . . . . . . 8 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19530 . . . . . . 7 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝐼) → (𝐻𝑘) ∈ (Base‘𝐺))
11 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
12 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
13 dprdfsub.b . . . . . . 7 = (-g𝐺)
145, 11, 12, 13grpsubval 18540 . . . . . 6 (((𝐹𝑘) ∈ (Base‘𝐺) ∧ (𝐻𝑘) ∈ (Base‘𝐺)) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
157, 10, 14syl2anc 583 . . . . 5 ((𝜑𝑘𝐼) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
1615mpteq2dva 5170 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
172, 3dprddomcld 19519 . . . . 5 (𝜑𝐼 ∈ V)
186feqmptd 6819 . . . . 5 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
199feqmptd 6819 . . . . 5 (𝜑𝐻 = (𝑘𝐼 ↦ (𝐻𝑘)))
2017, 7, 10, 18, 19offval2 7531 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))))
21 fvexd 6771 . . . . 5 ((𝜑𝑘𝐼) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
22 dprdgrp 19523 . . . . . . . . . 10 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
232, 22syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
245, 12, 23grpinvf1o 18560 . . . . . . . 8 (𝜑 → (invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺))
25 f1of 6700 . . . . . . . 8 ((invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2624, 25syl 17 . . . . . . 7 (𝜑 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2726feqmptd 6819 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
28 fveq2 6756 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
2910, 19, 27, 28fmptco 6983 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐼 ↦ ((invg𝐺)‘(𝐻𝑘))))
3017, 7, 21, 18, 29offval2 7531 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
3116, 20, 303eqtr4d 2788 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
32 eldprdi.0 . . . . 5 0 = (0g𝐺)
3332, 1, 2, 3, 8, 12dprdfinv 19537 . . . . . 6 (𝜑 → (((invg𝐺) ∘ 𝐻) ∈ 𝑊 ∧ (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻))))
3433simpld 494 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) ∈ 𝑊)
3532, 1, 2, 3, 4, 34, 11dprdfadd 19538 . . . 4 (𝜑 → ((𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻)))))
3635simpld 494 . . 3 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊)
3731, 36eqeltrd 2839 . 2 (𝜑 → (𝐹f 𝐻) ∈ 𝑊)
3831oveq2d 7271 . . 3 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
3933simprd 495 . . . . 5 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
4039oveq2d 7271 . . . 4 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4135simprd 495 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
425dprdssv 19534 . . . . . 6 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4332, 1, 2, 3, 4eldprdi 19536 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3915 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4532, 1, 2, 3, 8eldprdi 19536 . . . . . 6 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3915 . . . . 5 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 11, 12, 13grpsubval 18540 . . . . 5 (((𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4844, 46, 47syl2anc 583 . . . 4 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4940, 41, 483eqtr4d 2788 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5038, 49eqtrd 2778 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5137, 50jca 511 1 (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  Xcixp 8643   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  dprdfeq0  19540  dprdf11  19541  dprdsubg  19542
  Copyright terms: Public domain W3C validator