MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfsub Structured version   Visualization version   GIF version

Theorem dprdfsub 19902
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfsub.b = (-g𝐺)
Assertion
Ref Expression
dprdfsub (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   (,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . . 8 (𝜑𝐹𝑊)
5 eqid 2729 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19893 . . . . . . 7 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffvelcdmda 7018 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
8 dprdfadd.4 . . . . . . . 8 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19893 . . . . . . 7 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffvelcdmda 7018 . . . . . 6 ((𝜑𝑘𝐼) → (𝐻𝑘) ∈ (Base‘𝐺))
11 eqid 2729 . . . . . . 7 (+g𝐺) = (+g𝐺)
12 eqid 2729 . . . . . . 7 (invg𝐺) = (invg𝐺)
13 dprdfsub.b . . . . . . 7 = (-g𝐺)
145, 11, 12, 13grpsubval 18864 . . . . . 6 (((𝐹𝑘) ∈ (Base‘𝐺) ∧ (𝐻𝑘) ∈ (Base‘𝐺)) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
157, 10, 14syl2anc 584 . . . . 5 ((𝜑𝑘𝐼) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
1615mpteq2dva 5185 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
172, 3dprddomcld 19882 . . . . 5 (𝜑𝐼 ∈ V)
186feqmptd 6891 . . . . 5 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
199feqmptd 6891 . . . . 5 (𝜑𝐻 = (𝑘𝐼 ↦ (𝐻𝑘)))
2017, 7, 10, 18, 19offval2 7633 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))))
21 fvexd 6837 . . . . 5 ((𝜑𝑘𝐼) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
22 dprdgrp 19886 . . . . . . . . . 10 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
232, 22syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
245, 12, 23grpinvf1o 18888 . . . . . . . 8 (𝜑 → (invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺))
25 f1of 6764 . . . . . . . 8 ((invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2624, 25syl 17 . . . . . . 7 (𝜑 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2726feqmptd 6891 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
28 fveq2 6822 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
2910, 19, 27, 28fmptco 7063 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐼 ↦ ((invg𝐺)‘(𝐻𝑘))))
3017, 7, 21, 18, 29offval2 7633 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
3116, 20, 303eqtr4d 2774 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
32 eldprdi.0 . . . . 5 0 = (0g𝐺)
3332, 1, 2, 3, 8, 12dprdfinv 19900 . . . . . 6 (𝜑 → (((invg𝐺) ∘ 𝐻) ∈ 𝑊 ∧ (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻))))
3433simpld 494 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) ∈ 𝑊)
3532, 1, 2, 3, 4, 34, 11dprdfadd 19901 . . . 4 (𝜑 → ((𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻)))))
3635simpld 494 . . 3 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊)
3731, 36eqeltrd 2828 . 2 (𝜑 → (𝐹f 𝐻) ∈ 𝑊)
3831oveq2d 7365 . . 3 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
3933simprd 495 . . . . 5 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
4039oveq2d 7365 . . . 4 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4135simprd 495 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
425dprdssv 19897 . . . . . 6 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4332, 1, 2, 3, 4eldprdi 19899 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3933 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4532, 1, 2, 3, 8eldprdi 19899 . . . . . 6 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3933 . . . . 5 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 11, 12, 13grpsubval 18864 . . . . 5 (((𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4844, 46, 47syl2anc 584 . . . 4 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4940, 41, 483eqtr4d 2774 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5038, 49eqtrd 2764 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5137, 50jca 511 1 (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  f cof 7611  Xcixp 8824   finSupp cfsupp 9251  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Grpcgrp 18812  invgcminusg 18813  -gcsg 18814   DProd cdprd 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-gim 19138  df-cntz 19196  df-oppg 19225  df-cmn 19661  df-dprd 19876
This theorem is referenced by:  dprdfeq0  19903  dprdf11  19904  dprdsubg  19905
  Copyright terms: Public domain W3C validator