MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfsub Structured version   Visualization version   GIF version

Theorem dprdfsub 19814
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfsub.b = (-g𝐺)
Assertion
Ref Expression
dprdfsub (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Distinct variable groups:   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝐻(𝑖)   (,𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfsub
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . . 8 (𝜑𝐹𝑊)
5 eqid 2731 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19805 . . . . . . 7 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76ffvelcdmda 7040 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
8 dprdfadd.4 . . . . . . . 8 (𝜑𝐻𝑊)
91, 2, 3, 8, 5dprdff 19805 . . . . . . 7 (𝜑𝐻:𝐼⟶(Base‘𝐺))
109ffvelcdmda 7040 . . . . . 6 ((𝜑𝑘𝐼) → (𝐻𝑘) ∈ (Base‘𝐺))
11 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
12 eqid 2731 . . . . . . 7 (invg𝐺) = (invg𝐺)
13 dprdfsub.b . . . . . . 7 = (-g𝐺)
145, 11, 12, 13grpsubval 18810 . . . . . 6 (((𝐹𝑘) ∈ (Base‘𝐺) ∧ (𝐻𝑘) ∈ (Base‘𝐺)) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
157, 10, 14syl2anc 584 . . . . 5 ((𝜑𝑘𝐼) → ((𝐹𝑘) (𝐻𝑘)) = ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘))))
1615mpteq2dva 5210 . . . 4 (𝜑 → (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
172, 3dprddomcld 19794 . . . . 5 (𝜑𝐼 ∈ V)
186feqmptd 6915 . . . . 5 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
199feqmptd 6915 . . . . 5 (𝜑𝐻 = (𝑘𝐼 ↦ (𝐻𝑘)))
2017, 7, 10, 18, 19offval2 7642 . . . 4 (𝜑 → (𝐹f 𝐻) = (𝑘𝐼 ↦ ((𝐹𝑘) (𝐻𝑘))))
21 fvexd 6862 . . . . 5 ((𝜑𝑘𝐼) → ((invg𝐺)‘(𝐻𝑘)) ∈ V)
22 dprdgrp 19798 . . . . . . . . . 10 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
232, 22syl 17 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
245, 12, 23grpinvf1o 18831 . . . . . . . 8 (𝜑 → (invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺))
25 f1of 6789 . . . . . . . 8 ((invg𝐺):(Base‘𝐺)–1-1-onto→(Base‘𝐺) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2624, 25syl 17 . . . . . . 7 (𝜑 → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2726feqmptd 6915 . . . . . 6 (𝜑 → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
28 fveq2 6847 . . . . . 6 (𝑥 = (𝐻𝑘) → ((invg𝐺)‘𝑥) = ((invg𝐺)‘(𝐻𝑘)))
2910, 19, 27, 28fmptco 7080 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) = (𝑘𝐼 ↦ ((invg𝐺)‘(𝐻𝑘))))
3017, 7, 21, 18, 29offval2 7642 . . . 4 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) = (𝑘𝐼 ↦ ((𝐹𝑘)(+g𝐺)((invg𝐺)‘(𝐻𝑘)))))
3116, 20, 303eqtr4d 2781 . . 3 (𝜑 → (𝐹f 𝐻) = (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)))
32 eldprdi.0 . . . . 5 0 = (0g𝐺)
3332, 1, 2, 3, 8, 12dprdfinv 19812 . . . . . 6 (𝜑 → (((invg𝐺) ∘ 𝐻) ∈ 𝑊 ∧ (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻))))
3433simpld 495 . . . . 5 (𝜑 → ((invg𝐺) ∘ 𝐻) ∈ 𝑊)
3532, 1, 2, 3, 4, 34, 11dprdfadd 19813 . . . 4 (𝜑 → ((𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻)))))
3635simpld 495 . . 3 (𝜑 → (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻)) ∈ 𝑊)
3731, 36eqeltrd 2832 . 2 (𝜑 → (𝐹f 𝐻) ∈ 𝑊)
3831oveq2d 7378 . . 3 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))))
3933simprd 496 . . . . 5 (𝜑 → (𝐺 Σg ((invg𝐺) ∘ 𝐻)) = ((invg𝐺)‘(𝐺 Σg 𝐻)))
4039oveq2d 7378 . . . 4 (𝜑 → ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4135simprd 496 . . . 4 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹)(+g𝐺)(𝐺 Σg ((invg𝐺) ∘ 𝐻))))
425dprdssv 19809 . . . . . 6 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
4332, 1, 2, 3, 4eldprdi 19811 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd 𝑆))
4442, 43sselid 3945 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (Base‘𝐺))
4532, 1, 2, 3, 8eldprdi 19811 . . . . . 6 (𝜑 → (𝐺 Σg 𝐻) ∈ (𝐺 DProd 𝑆))
4642, 45sselid 3945 . . . . 5 (𝜑 → (𝐺 Σg 𝐻) ∈ (Base‘𝐺))
475, 11, 12, 13grpsubval 18810 . . . . 5 (((𝐺 Σg 𝐹) ∈ (Base‘𝐺) ∧ (𝐺 Σg 𝐻) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4844, 46, 47syl2anc 584 . . . 4 (𝜑 → ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)) = ((𝐺 Σg 𝐹)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝐻))))
4940, 41, 483eqtr4d 2781 . . 3 (𝜑 → (𝐺 Σg (𝐹f (+g𝐺)((invg𝐺) ∘ 𝐻))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5038, 49eqtrd 2771 . 2 (𝜑 → (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
5137, 50jca 512 1 (𝜑 → ((𝐹f 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f 𝐻)) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3405  Vcvv 3446   class class class wbr 5110  cmpt 5193  dom cdm 5638  ccom 5642  wf 6497  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  f cof 7620  Xcixp 8842   finSupp cfsupp 9312  Basecbs 17094  +gcplusg 17147  0gc0g 17335   Σg cgsu 17336  Grpcgrp 18762  invgcminusg 18763  -gcsg 18764   DProd cdprd 19786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-2 12225  df-n0 12423  df-z 12509  df-uz 12773  df-fz 13435  df-fzo 13578  df-seq 13917  df-hash 14241  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-0g 17337  df-gsum 17338  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-submnd 18616  df-grp 18765  df-minusg 18766  df-sbg 18767  df-subg 18939  df-ghm 19020  df-gim 19063  df-cntz 19111  df-oppg 19138  df-cmn 19578  df-dprd 19788
This theorem is referenced by:  dprdfeq0  19815  dprdf11  19816  dprdsubg  19817
  Copyright terms: Public domain W3C validator