MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdcntz Structured version   Visualization version   GIF version

Theorem dprdcntz 20028
Description: The function 𝑆 is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdcntz.1 (𝜑𝐺dom DProd 𝑆)
dprdcntz.2 (𝜑 → dom 𝑆 = 𝐼)
dprdcntz.3 (𝜑𝑋𝐼)
dprdcntz.4 (𝜑𝑌𝐼)
dprdcntz.5 (𝜑𝑋𝑌)
dprdcntz.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
dprdcntz (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))

Proof of Theorem dprdcntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6911 . . 3 (𝑦 = 𝑌 → (𝑍‘(𝑆𝑦)) = (𝑍‘(𝑆𝑌)))
21sseq2d 4016 . 2 (𝑦 = 𝑌 → ((𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌))))
3 sneq 4636 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
43difeq2d 4126 . . . 4 (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋}))
5 fveq2 6906 . . . . 5 (𝑥 = 𝑋 → (𝑆𝑥) = (𝑆𝑋))
65sseq1d 4015 . . . 4 (𝑥 = 𝑋 → ((𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
74, 6raleqbidv 3346 . . 3 (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦))))
8 dprdcntz.1 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
9 dprdcntz.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
108, 9dprddomcld 20021 . . . . . . 7 (𝜑𝐼 ∈ V)
11 dprdcntz.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
12 eqid 2737 . . . . . . . 8 (0g𝐺) = (0g𝐺)
13 eqid 2737 . . . . . . . 8 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1411, 12, 13dmdprd 20018 . . . . . . 7 ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
1510, 9, 14syl2anc 584 . . . . . 6 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))))
168, 15mpbid 232 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)})))
1716simp3d 1145 . . . 4 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}))
18 simpl 482 . . . . 5 ((∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
1918ralimi 3083 . . . 4 (∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = {(0g𝐺)}) → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
2017, 19syl 17 . . 3 (𝜑 → ∀𝑥𝐼𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
21 dprdcntz.3 . . 3 (𝜑𝑋𝐼)
227, 20, 21rspcdva 3623 . 2 (𝜑 → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆𝑋) ⊆ (𝑍‘(𝑆𝑦)))
23 dprdcntz.4 . . 3 (𝜑𝑌𝐼)
24 dprdcntz.5 . . . 4 (𝜑𝑋𝑌)
2524necomd 2996 . . 3 (𝜑𝑌𝑋)
26 eldifsn 4786 . . 3 (𝑌 ∈ (𝐼 ∖ {𝑋}) ↔ (𝑌𝐼𝑌𝑋))
2723, 25, 26sylanbrc 583 . 2 (𝜑𝑌 ∈ (𝐼 ∖ {𝑋}))
282, 22, 27rspcdva 3623 1 (𝜑 → (𝑆𝑋) ⊆ (𝑍‘(𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  cin 3950  wss 3951  {csn 4626   cuni 4907   class class class wbr 5143  dom cdm 5685  cima 5688  wf 6557  cfv 6561  0gc0g 17484  mrClscmrc 17626  Grpcgrp 18951  SubGrpcsubg 19138  Cntzccntz 19333   DProd cdprd 20013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-ixp 8938  df-dprd 20015
This theorem is referenced by:  dprdfcntz  20035  dprdfadd  20040  dprdres  20048  dprdss  20049  dprdf1o  20052  dprdcntz2  20058  dprd2da  20062  dmdprdsplit2lem  20065
  Copyright terms: Public domain W3C validator