Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6779 |
. . 3
⊢ (𝑦 = 𝑌 → (𝑍‘(𝑆‘𝑦)) = (𝑍‘(𝑆‘𝑌))) |
2 | 1 | sseq2d 3953 |
. 2
⊢ (𝑦 = 𝑌 → ((𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) |
3 | | sneq 4571 |
. . . . 5
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
4 | 3 | difeq2d 4057 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
5 | | fveq2 6774 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) |
6 | 5 | sseq1d 3952 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)))) |
7 | 4, 6 | raleqbidv 3336 |
. . 3
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)))) |
8 | | dprdcntz.1 |
. . . . . 6
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
9 | | dprdcntz.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
10 | 8, 9 | dprddomcld 19604 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
11 | | dprdcntz.z |
. . . . . . . 8
⊢ 𝑍 = (Cntz‘𝐺) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
13 | | eqid 2738 |
. . . . . . . 8
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
14 | 11, 12, 13 | dmdprd 19601 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})))) |
15 | 10, 9, 14 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})))) |
16 | 8, 15 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)}))) |
17 | 16 | simp3d 1143 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})) |
18 | | simpl 483 |
. . . . 5
⊢
((∀𝑦 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})
→ ∀𝑦 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
19 | 18 | ralimi 3087 |
. . . 4
⊢
(∀𝑥 ∈
𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})
→ ∀𝑥 ∈
𝐼 ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
20 | 17, 19 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
21 | | dprdcntz.3 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
22 | 7, 20, 21 | rspcdva 3562 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦))) |
23 | | dprdcntz.4 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
24 | | dprdcntz.5 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
25 | 24 | necomd 2999 |
. . 3
⊢ (𝜑 → 𝑌 ≠ 𝑋) |
26 | | eldifsn 4720 |
. . 3
⊢ (𝑌 ∈ (𝐼 ∖ {𝑋}) ↔ (𝑌 ∈ 𝐼 ∧ 𝑌 ≠ 𝑋)) |
27 | 23, 25, 26 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝐼 ∖ {𝑋})) |
28 | 2, 22, 27 | rspcdva 3562 |
1
⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |