| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6911 |
. . 3
⊢ (𝑦 = 𝑌 → (𝑍‘(𝑆‘𝑦)) = (𝑍‘(𝑆‘𝑌))) |
| 2 | 1 | sseq2d 4016 |
. 2
⊢ (𝑦 = 𝑌 → ((𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌)))) |
| 3 | | sneq 4636 |
. . . . 5
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
| 4 | 3 | difeq2d 4126 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐼 ∖ {𝑥}) = (𝐼 ∖ {𝑋})) |
| 5 | | fveq2 6906 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑆‘𝑥) = (𝑆‘𝑋)) |
| 6 | 5 | sseq1d 4015 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)))) |
| 7 | 4, 6 | raleqbidv 3346 |
. . 3
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ↔ ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦)))) |
| 8 | | dprdcntz.1 |
. . . . . 6
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 9 | | dprdcntz.2 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 10 | 8, 9 | dprddomcld 20021 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | | dprdcntz.z |
. . . . . . . 8
⊢ 𝑍 = (Cntz‘𝐺) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 13 | | eqid 2737 |
. . . . . . . 8
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
| 14 | 11, 12, 13 | dmdprd 20018 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})))) |
| 15 | 10, 9, 14 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})))) |
| 16 | 8, 15 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)}))) |
| 17 | 16 | simp3d 1145 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})) |
| 18 | | simpl 482 |
. . . . 5
⊢
((∀𝑦 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})
→ ∀𝑦 ∈
(𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 19 | 18 | ralimi 3083 |
. . . 4
⊢
(∀𝑥 ∈
𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) =
{(0g‘𝐺)})
→ ∀𝑥 ∈
𝐼 ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 20 | 17, 19 | syl 17 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 21 | | dprdcntz.3 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 22 | 7, 20, 21 | rspcdva 3623 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ (𝐼 ∖ {𝑋})(𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 23 | | dprdcntz.4 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐼) |
| 24 | | dprdcntz.5 |
. . . 4
⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| 25 | 24 | necomd 2996 |
. . 3
⊢ (𝜑 → 𝑌 ≠ 𝑋) |
| 26 | | eldifsn 4786 |
. . 3
⊢ (𝑌 ∈ (𝐼 ∖ {𝑋}) ↔ (𝑌 ∈ 𝐼 ∧ 𝑌 ≠ 𝑋)) |
| 27 | 23, 25, 26 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝐼 ∖ {𝑋})) |
| 28 | 2, 22, 27 | rspcdva 3623 |
1
⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝑍‘(𝑆‘𝑌))) |