Step | Hyp | Ref
| Expression |
1 | | eldprdi.w |
. . . . . . 7
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
2 | | eldprdi.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
3 | | eldprdi.2 |
. . . . . . 7
⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | | eldprdi.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
6 | 1, 2, 3, 4, 5 | dprdff 19615 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
7 | 6 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
9 | 1, 2, 3, 4 | dprdfcl 19616 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
10 | 9 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
11 | | eldprdi.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐺) |
12 | 2 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd 𝑆) |
13 | 3 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → dom 𝑆 = 𝐼) |
14 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
15 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) |
16 | 11, 1, 12, 13, 14, 10, 15 | dprdfid 19620 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) = (𝐹‘𝑥))) |
17 | 16 | simpld 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∈ 𝑊) |
18 | 4 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝑊) |
19 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(-g‘𝐺) = (-g‘𝐺) |
20 | 11, 1, 12, 13, 17, 18, 19 | dprdfsub 19624 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)))) |
21 | 20 | simprd 496 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹))) |
22 | 2, 3 | dprddomcld 19604 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ V) |
23 | 22 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ V) |
24 | | fvex 6787 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑥) ∈ V |
25 | 11 | fvexi 6788 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
26 | 24, 25 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) ∈
V |
27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) ∈
V) |
28 | | fvexd 6789 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ V) |
29 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) |
30 | 6 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹:𝐼⟶(Base‘𝐺)) |
31 | 30 | feqmptd 6837 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹 = (𝑦 ∈ 𝐼 ↦ (𝐹‘𝑦))) |
32 | 23, 27, 28, 29, 31 | offval2 7553 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) = (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) |
33 | 32 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))))) |
34 | 16 | simprd 496 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) = (𝐹‘𝑥)) |
35 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg 𝐹) = 0 ) |
36 | 34, 35 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)) = ((𝐹‘𝑥)(-g‘𝐺) 0 )) |
37 | | dprdgrp 19608 |
. . . . . . . . . . . . 13
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
38 | 12, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
39 | 30, 14 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
40 | 5, 11, 19 | grpsubid1 18660 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺)) → ((𝐹‘𝑥)(-g‘𝐺) 0 ) = (𝐹‘𝑥)) |
41 | 38, 39, 40 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺) 0 ) = (𝐹‘𝑥)) |
42 | 36, 41 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)) = (𝐹‘𝑥)) |
43 | 21, 33, 42 | 3eqtr3d 2786 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) = (𝐹‘𝑥)) |
44 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
45 | | grpmnd 18584 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
46 | 2, 37, 45 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) |
47 | 46 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Mnd) |
48 | 5 | subgacs 18789 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
49 | | acsmre 17361 |
. . . . . . . . . . . . 13
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
50 | 38, 48, 49 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
51 | | imassrn 5980 |
. . . . . . . . . . . . . 14
⊢ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆 |
52 | 2, 3 | dprdf2 19610 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
53 | 52 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
54 | 53 | frnd 6608 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
55 | | mresspw 17301 |
. . . . . . . . . . . . . . . 16
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
56 | 50, 55 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
57 | 54, 56 | sstrd 3931 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺)) |
58 | 51, 57 | sstrid 3932 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺)) |
59 | | sspwuni 5029 |
. . . . . . . . . . . . 13
⊢ ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
60 | 58, 59 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
61 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
62 | 61 | mrccl 17320 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
63 | 50, 60, 62 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
64 | | subgsubm 18777 |
. . . . . . . . . . 11
⊢
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺)) |
65 | 63, 64 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺)) |
66 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) = (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) |
67 | 66 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → (((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
68 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ ( 0 = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → ( 0
(-g‘𝐺)(𝐹‘𝑦)) = (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) |
69 | 68 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ ( 0 = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → (( 0
(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
70 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
71 | 70 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
72 | 71 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) = ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥))) |
73 | 5, 11, 19 | grpsubid 18659 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺)) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) = 0 ) |
74 | 38, 39, 73 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) = 0 ) |
75 | 11 | subg0cl 18763 |
. . . . . . . . . . . . . . . 16
⊢
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
76 | 63, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
77 | 74, 76 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
78 | 77 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
79 | 72, 78 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
80 | 63 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
81 | 80, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
82 | 50, 61, 60 | mrcssidd 17334 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
83 | 82 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
84 | 1, 12, 13, 18 | dprdfcl 19616 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
85 | 84 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
86 | 53 | ffnd 6601 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑆 Fn 𝐼) |
87 | 86 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼) |
88 | | difssd 4067 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼) |
89 | | df-ne 2944 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥) |
90 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥)) |
91 | 90 | biimpri 227 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
92 | 89, 91 | sylan2br 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
93 | 92 | adantll 711 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
94 | | fnfvima 7109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼 ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) |
95 | 87, 88, 93, 94 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) |
96 | | elunii 4844 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑦) ∈ (𝑆‘𝑦) ∧ (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹‘𝑦) ∈ ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
97 | 85, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
98 | 83, 97 | sseldd 3922 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
99 | 19 | subgsubcl 18766 |
. . . . . . . . . . . . 13
⊢
((((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹‘𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) → ( 0
(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
100 | 80, 81, 98, 99 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
101 | 67, 69, 79, 100 | ifbothda 4497 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
102 | 101 | fmpttd 6989 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
103 | 20 | simpld 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) ∈ 𝑊) |
104 | 32, 103 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) ∈ 𝑊) |
105 | 1, 12, 13, 104, 44 | dprdfcntz 19618 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))))) |
106 | 1, 12, 13, 104 | dprdffsupp 19617 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) finSupp 0 ) |
107 | 11, 44, 47, 23, 65, 102, 105, 106 | gsumzsubmcl 19519 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
108 | 43, 107 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
109 | 10, 108 | elind 4128 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
110 | 12, 13, 14, 11, 61 | dprddisj 19612 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) = { 0 }) |
111 | 109, 110 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ { 0 }) |
112 | | elsni 4578 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ { 0 } → (𝐹‘𝑥) = 0 ) |
113 | 111, 112 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = 0 ) |
114 | 113 | mpteq2dva 5174 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐼 ↦ 0 )) |
115 | 8, 114 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 )) |
116 | 115 | ex 413 |
. 2
⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 → 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) |
117 | 11 | gsumz 18474 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg
(𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
118 | 46, 22, 117 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
119 | | oveq2 7283 |
. . . 4
⊢ (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 ))) |
120 | 119 | eqeq1d 2740 |
. . 3
⊢ (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → ((𝐺 Σg
𝐹) = 0 ↔ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 )) |
121 | 118, 120 | syl5ibrcom 246 |
. 2
⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → (𝐺 Σg
𝐹) = 0 )) |
122 | 116, 121 | impbid 211 |
1
⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) |