MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Structured version   Visualization version   GIF version

Theorem dprdfeq0 19625
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfeq0 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Distinct variable groups:   𝑥,,𝐹   ,𝑖,𝐺,𝑥   ,𝐼,𝑖,𝑥   𝜑,𝑥   0 ,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(𝑥,,𝑖)   0 (𝑖)

Proof of Theorem dprdfeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . 7 (𝜑𝐹𝑊)
5 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19615 . . . . . 6 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76feqmptd 6837 . . . . 5 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
87adantr 481 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
91, 2, 3, 4dprdfcl 19616 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
109adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
11 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
122ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
133ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 simpr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑥𝐼)
15 eqid 2738 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))
1611, 1, 12, 13, 14, 10, 15dprdfid 19620 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥)))
1716simpld 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊)
184ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹𝑊)
19 eqid 2738 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
2011, 1, 12, 13, 17, 18, 19dprdfsub 19624 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹))))
2120simprd 496 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)))
222, 3dprddomcld 19604 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
2322ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐼 ∈ V)
24 fvex 6787 . . . . . . . . . . . . . 14 (𝐹𝑥) ∈ V
2511fvexi 6788 . . . . . . . . . . . . . 14 0 ∈ V
2624, 25ifex 4509 . . . . . . . . . . . . 13 if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V
2726a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V)
28 fvexd 6789 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ V)
29 eqidd 2739 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))
306ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹:𝐼⟶(Base‘𝐺))
3130feqmptd 6837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹 = (𝑦𝐼 ↦ (𝐹𝑦)))
3223, 27, 28, 29, 31offval2 7553 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))))
3332oveq2d 7291 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
3416simprd 496 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥))
35 simplr 766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg 𝐹) = 0 )
3634, 35oveq12d 7293 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = ((𝐹𝑥)(-g𝐺) 0 ))
37 dprdgrp 19608 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
3812, 37syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
3930, 14ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
405, 11, 19grpsubid1 18660 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4138, 39, 40syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4236, 41eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = (𝐹𝑥))
4321, 33, 423eqtr3d 2786 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) = (𝐹𝑥))
44 eqid 2738 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
45 grpmnd 18584 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
462, 37, 453syl 18 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
4746ad2antrr 723 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
485subgacs 18789 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
49 acsmre 17361 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5038, 48, 493syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
51 imassrn 5980 . . . . . . . . . . . . . 14 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
522, 3dprdf2 19610 . . . . . . . . . . . . . . . . 17 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5352ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
5453frnd 6608 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
55 mresspw 17301 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5650, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5754, 56sstrd 3931 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5851, 57sstrid 3932 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
59 sspwuni 5029 . . . . . . . . . . . . 13 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6058, 59sylib 217 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
61 eqid 2738 . . . . . . . . . . . . 13 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6261mrccl 17320 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
6350, 60, 62syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
64 subgsubm 18777 . . . . . . . . . . 11 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
6563, 64syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
66 oveq1 7282 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6766eleq1d 2823 . . . . . . . . . . . 12 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
68 oveq1 7282 . . . . . . . . . . . . 13 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ( 0 (-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6968eleq1d 2823 . . . . . . . . . . . 12 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
70 simpr 485 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
7170fveq2d 6778 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
7271oveq2d 7291 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = ((𝐹𝑥)(-g𝐺)(𝐹𝑥)))
735, 11, 19grpsubid 18659 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7438, 39, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7511subg0cl 18763 . . . . . . . . . . . . . . . 16 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7663, 75syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7774, 76eqeltrd 2839 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7877ad2antrr 723 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7972, 78eqeltrd 2839 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8063ad2antrr 723 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
8180, 75syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8250, 61, 60mrcssidd 17334 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8382ad2antrr 723 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
841, 12, 13, 18dprdfcl 19616 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
8584adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆𝑦))
8653ffnd 6601 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆 Fn 𝐼)
8786ad2antrr 723 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼)
88 difssd 4067 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
89 df-ne 2944 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 ↔ ¬ 𝑦 = 𝑥)
90 eldifsn 4720 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
9190biimpri 227 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐼𝑦𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9289, 91sylan2br 595 . . . . . . . . . . . . . . . . 17 ((𝑦𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9392adantll 711 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
94 fnfvima 7109 . . . . . . . . . . . . . . . 16 ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9587, 88, 93, 94syl3anc 1370 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
96 elunii 4844 . . . . . . . . . . . . . . 15 (((𝐹𝑦) ∈ (𝑆𝑦) ∧ (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9785, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9883, 97sseldd 3922 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
9919subgsubcl 18766 . . . . . . . . . . . . 13 ((((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10080, 81, 98, 99syl3anc 1370 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10167, 69, 79, 100ifbothda 4497 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
102101fmpttd 6989 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10320simpld 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) ∈ 𝑊)
10432, 103eqeltrrd 2840 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ∈ 𝑊)
1051, 12, 13, 104, 44dprdfcntz 19618 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
1061, 12, 13, 104dprdffsupp 19617 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) finSupp 0 )
10711, 44, 47, 23, 65, 102, 105, 106gsumzsubmcl 19519 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10843, 107eqeltrrd 2840 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10910, 108elind 4128 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
11012, 13, 14, 11, 61dprddisj 19612 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
111109, 110eleqtrd 2841 . . . . . 6 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ { 0 })
112 elsni 4578 . . . . . 6 ((𝐹𝑥) ∈ { 0 } → (𝐹𝑥) = 0 )
113111, 112syl 17 . . . . 5 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) = 0 )
114113mpteq2dva 5174 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥𝐼 ↦ (𝐹𝑥)) = (𝑥𝐼0 ))
1158, 114eqtrd 2778 . . 3 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼0 ))
116115ex 413 . 2 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
11711gsumz 18474 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
11846, 22, 117syl2anc 584 . . 3 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
119 oveq2 7283 . . . 4 (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐼0 )))
120119eqeq1d 2740 . . 3 (𝐹 = (𝑥𝐼0 ) → ((𝐺 Σg 𝐹) = 0 ↔ (𝐺 Σg (𝑥𝐼0 )) = 0 ))
121118, 120syl5ibrcom 246 . 2 (𝜑 → (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = 0 ))
122116, 121impbid 211 1 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  ifcif 4459  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Xcixp 8685   finSupp cfsupp 9128  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  Moorecmre 17291  mrClscmrc 17292  ACScacs 17294  Mndcmnd 18385  SubMndcsubmnd 18429  Grpcgrp 18577  -gcsg 18579  SubGrpcsubg 18749  Cntzccntz 18921   DProd cdprd 19596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-cmn 19388  df-dprd 19598
This theorem is referenced by:  dprdf11  19626
  Copyright terms: Public domain W3C validator