| Step | Hyp | Ref
| Expression |
| 1 | | eldprdi.w |
. . . . . . 7
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 2 | | eldprdi.1 |
. . . . . . 7
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 3 | | eldprdi.2 |
. . . . . . 7
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | | eldprdi.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 5 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | 1, 2, 3, 4, 5 | dprdff 20000 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 7 | 6 | feqmptd 6952 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 9 | 1, 2, 3, 4 | dprdfcl 20001 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 10 | 9 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 11 | | eldprdi.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐺) |
| 12 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd 𝑆) |
| 13 | 3 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → dom 𝑆 = 𝐼) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑥 ∈ 𝐼) |
| 15 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) |
| 16 | 11, 1, 12, 13, 14, 10, 15 | dprdfid 20005 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) = (𝐹‘𝑥))) |
| 17 | 16 | simpld 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∈ 𝑊) |
| 18 | 4 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹 ∈ 𝑊) |
| 19 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 20 | 11, 1, 12, 13, 17, 18, 19 | dprdfsub 20009 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)))) |
| 21 | 20 | simprd 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹))) |
| 22 | 2, 3 | dprddomcld 19989 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | 22 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ V) |
| 24 | | fvex 6894 |
. . . . . . . . . . . . . 14
⊢ (𝐹‘𝑥) ∈ V |
| 25 | 11 | fvexi 6895 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 26 | 24, 25 | ifex 4556 |
. . . . . . . . . . . . 13
⊢ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) ∈
V |
| 27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) ∈
V) |
| 28 | | fvexd 6896 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ V) |
| 29 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) |
| 30 | 6 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹:𝐼⟶(Base‘𝐺)) |
| 31 | 30 | feqmptd 6952 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐹 = (𝑦 ∈ 𝐼 ↦ (𝐹‘𝑦))) |
| 32 | 23, 27, 28, 29, 31 | offval2 7696 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) = (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) |
| 33 | 32 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹)) = (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))))) |
| 34 | 16 | simprd 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ))) = (𝐹‘𝑥)) |
| 35 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg 𝐹) = 0 ) |
| 36 | 34, 35 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)) = ((𝐹‘𝑥)(-g‘𝐺) 0 )) |
| 37 | | dprdgrp 19993 |
. . . . . . . . . . . . 13
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 38 | 12, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 39 | 30, 14 | ffvelcdmd 7080 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝐺)) |
| 40 | 5, 11, 19 | grpsubid1 19013 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺)) → ((𝐹‘𝑥)(-g‘𝐺) 0 ) = (𝐹‘𝑥)) |
| 41 | 38, 39, 40 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺) 0 ) = (𝐹‘𝑥)) |
| 42 | 36, 41 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐺 Σg (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)))(-g‘𝐺)(𝐺 Σg 𝐹)) = (𝐹‘𝑥)) |
| 43 | 21, 33, 42 | 3eqtr3d 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) = (𝐹‘𝑥)) |
| 44 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 45 | | grpmnd 18928 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
| 46 | 2, 37, 45 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 47 | 46 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Mnd) |
| 48 | 5 | subgacs 19149 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
| 49 | | acsmre 17669 |
. . . . . . . . . . . . 13
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 50 | 38, 48, 49 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 51 | | imassrn 6063 |
. . . . . . . . . . . . . 14
⊢ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆 |
| 52 | 2, 3 | dprdf2 19995 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 54 | 53 | frnd 6719 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 55 | | mresspw 17609 |
. . . . . . . . . . . . . . . 16
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 56 | 50, 55 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 57 | 54, 56 | sstrd 3974 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺)) |
| 58 | 51, 57 | sstrid 3975 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺)) |
| 59 | | sspwuni 5081 |
. . . . . . . . . . . . 13
⊢ ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
| 60 | 58, 59 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
| 61 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
| 62 | 61 | mrccl 17628 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 63 | 50, 60, 62 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 64 | | subgsubm 19136 |
. . . . . . . . . . 11
⊢
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺)) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺)) |
| 66 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) = (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) |
| 67 | 66 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → (((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
| 68 | | oveq1 7417 |
. . . . . . . . . . . . 13
⊢ ( 0 = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → ( 0
(-g‘𝐺)(𝐹‘𝑦)) = (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) |
| 69 | 68 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ ( 0 = if(𝑦 = 𝑥, (𝐹‘𝑥), 0 ) → (( 0
(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
| 70 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 71 | 70 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 72 | 71 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) = ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥))) |
| 73 | 5, 11, 19 | grpsubid 19012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ (𝐹‘𝑥) ∈ (Base‘𝐺)) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) = 0 ) |
| 74 | 38, 39, 73 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) = 0 ) |
| 75 | 11 | subg0cl 19122 |
. . . . . . . . . . . . . . . 16
⊢
(((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
| 76 | 63, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
| 77 | 74, 76 | eqeltrd 2835 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 78 | 77 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 79 | 72, 78 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ 𝑦 = 𝑥) → ((𝐹‘𝑥)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 80 | 63 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 81 | 80, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
| 82 | 50, 61, 60 | mrcssidd 17642 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 83 | 82 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 84 | 1, 12, 13, 18 | dprdfcl 20001 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
| 85 | 84 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ (𝑆‘𝑦)) |
| 86 | 53 | ffnd 6712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → 𝑆 Fn 𝐼) |
| 87 | 86 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼) |
| 88 | | difssd 4117 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼) |
| 89 | | df-ne 2934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ≠ 𝑥 ↔ ¬ 𝑦 = 𝑥) |
| 90 | | eldifsn 4767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥)) |
| 91 | 90 | biimpri 228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
| 92 | 89, 91 | sylan2br 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
| 93 | 92 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥})) |
| 94 | | fnfvima 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼 ∧ 𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) |
| 95 | 87, 88, 93, 94 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) |
| 96 | | elunii 4893 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑦) ∈ (𝑆‘𝑦) ∧ (𝑆‘𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹‘𝑦) ∈ ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
| 97 | 85, 95, 96 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ ∪ (𝑆 “ (𝐼 ∖ {𝑥}))) |
| 98 | 83, 97 | sseldd 3964 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹‘𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 99 | 19 | subgsubcl 19125 |
. . . . . . . . . . . . 13
⊢
((((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹‘𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) → ( 0
(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 100 | 80, 81, 98, 99 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝐺 Σg
𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 101 | 67, 69, 79, 100 | ifbothda 4544 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐼) → (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 102 | 101 | fmpttd 7110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 103 | 20 | simpld 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑥, (𝐹‘𝑥), 0 )) ∘f
(-g‘𝐺)𝐹) ∈ 𝑊) |
| 104 | 32, 103 | eqeltrrd 2836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) ∈ 𝑊) |
| 105 | 1, 12, 13, 104, 44 | dprdfcntz 20003 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ran (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))))) |
| 106 | 1, 12, 13, 104 | dprdffsupp 20002 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦))) finSupp 0 ) |
| 107 | 11, 44, 47, 23, 65, 102, 105, 106 | gsumzsubmcl 19904 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐺 Σg (𝑦 ∈ 𝐼 ↦ (if(𝑦 = 𝑥, (𝐹‘𝑥), 0
)(-g‘𝐺)(𝐹‘𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 108 | 43, 107 | eqeltrrd 2836 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) |
| 109 | 10, 108 | elind 4180 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))))) |
| 110 | 12, 13, 14, 11, 61 | dprddisj 19997 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 111 | 109, 110 | eleqtrd 2837 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ { 0 }) |
| 112 | | elsni 4623 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ { 0 } → (𝐹‘𝑥) = 0 ) |
| 113 | 111, 112 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = 0 ) |
| 114 | 113 | mpteq2dva 5219 |
. . . 4
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 115 | 8, 114 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 )) |
| 116 | 115 | ex 412 |
. 2
⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 → 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 117 | 11 | gsumz 18819 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg
(𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
| 118 | 46, 22, 117 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 ) |
| 119 | | oveq2 7418 |
. . . 4
⊢ (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 ))) |
| 120 | 119 | eqeq1d 2738 |
. . 3
⊢ (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → ((𝐺 Σg
𝐹) = 0 ↔ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ 0 )) = 0 )) |
| 121 | 118, 120 | syl5ibrcom 247 |
. 2
⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ) → (𝐺 Σg
𝐹) = 0 )) |
| 122 | 116, 121 | impbid 212 |
1
⊢ (𝜑 → ((𝐺 Σg 𝐹) = 0 ↔ 𝐹 = (𝑥 ∈ 𝐼 ↦ 0 ))) |