MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfeq0 Structured version   Visualization version   GIF version

Theorem dprdfeq0 19903
Description: The zero function is the only function that sums to zero in a direct product. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
Assertion
Ref Expression
dprdfeq0 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Distinct variable groups:   𝑥,,𝐹   ,𝑖,𝐺,𝑥   ,𝐼,𝑖,𝑥   𝜑,𝑥   0 ,,𝑥   𝑆,,𝑖,𝑥
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(𝑥,,𝑖)   0 (𝑖)

Proof of Theorem dprdfeq0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldprdi.w . . . . . . 7 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
2 eldprdi.1 . . . . . . 7 (𝜑𝐺dom DProd 𝑆)
3 eldprdi.2 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
4 eldprdi.3 . . . . . . 7 (𝜑𝐹𝑊)
5 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
61, 2, 3, 4, 5dprdff 19893 . . . . . 6 (𝜑𝐹:𝐼⟶(Base‘𝐺))
76feqmptd 6891 . . . . 5 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
91, 2, 3, 4dprdfcl 19894 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
109adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
11 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
122ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺dom DProd 𝑆)
133ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → dom 𝑆 = 𝐼)
14 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑥𝐼)
15 eqid 2729 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))
1611, 1, 12, 13, 14, 10, 15dprdfid 19898 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊 ∧ (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥)))
1716simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∈ 𝑊)
184ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹𝑊)
19 eqid 2729 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
2011, 1, 12, 13, 17, 18, 19dprdfsub 19902 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) ∈ 𝑊 ∧ (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹))))
2120simprd 495 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)))
222, 3dprddomcld 19882 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
2322ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐼 ∈ V)
24 fvex 6835 . . . . . . . . . . . . . 14 (𝐹𝑥) ∈ V
2511fvexi 6836 . . . . . . . . . . . . . 14 0 ∈ V
2624, 25ifex 4527 . . . . . . . . . . . . 13 if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V
2726a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → if(𝑦 = 𝑥, (𝐹𝑥), 0 ) ∈ V)
28 fvexd 6837 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ V)
29 eqidd 2730 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) = (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))
306ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹:𝐼⟶(Base‘𝐺))
3130feqmptd 6891 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐹 = (𝑦𝐼 ↦ (𝐹𝑦)))
3223, 27, 28, 29, 31offval2 7633 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) = (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))))
3332oveq2d 7365 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹)) = (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
3416simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 ))) = (𝐹𝑥))
35 simplr 768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg 𝐹) = 0 )
3634, 35oveq12d 7367 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = ((𝐹𝑥)(-g𝐺) 0 ))
37 dprdgrp 19886 . . . . . . . . . . . . 13 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
3812, 37syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Grp)
3930, 14ffvelcdmd 7019 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝐺))
405, 11, 19grpsubid1 18904 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4138, 39, 40syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺) 0 ) = (𝐹𝑥))
4236, 41eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐺 Σg (𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )))(-g𝐺)(𝐺 Σg 𝐹)) = (𝐹𝑥))
4321, 33, 423eqtr3d 2772 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) = (𝐹𝑥))
44 eqid 2729 . . . . . . . . . 10 (Cntz‘𝐺) = (Cntz‘𝐺)
45 grpmnd 18819 . . . . . . . . . . . 12 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
462, 37, 453syl 18 . . . . . . . . . . 11 (𝜑𝐺 ∈ Mnd)
4746ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝐺 ∈ Mnd)
485subgacs 19040 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
49 acsmre 17558 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
5038, 48, 493syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
51 imassrn 6022 . . . . . . . . . . . . . 14 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
522, 3dprdf2 19888 . . . . . . . . . . . . . . . . 17 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5352ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆:𝐼⟶(SubGrp‘𝐺))
5453frnd 6660 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
55 mresspw 17494 . . . . . . . . . . . . . . . 16 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5650, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
5754, 56sstrd 3946 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
5851, 57sstrid 3947 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
59 sspwuni 5049 . . . . . . . . . . . . 13 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
6058, 59sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
61 eqid 2729 . . . . . . . . . . . . 13 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
6261mrccl 17517 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
6350, 60, 62syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
64 subgsubm 19027 . . . . . . . . . . 11 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
6563, 64syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubMnd‘𝐺))
66 oveq1 7356 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6766eleq1d 2813 . . . . . . . . . . . 12 ((𝐹𝑥) = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
68 oveq1 7356 . . . . . . . . . . . . 13 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → ( 0 (-g𝐺)(𝐹𝑦)) = (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))
6968eleq1d 2813 . . . . . . . . . . . 12 ( 0 = if(𝑦 = 𝑥, (𝐹𝑥), 0 ) → (( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ↔ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
70 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
7170fveq2d 6826 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
7271oveq2d 7365 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) = ((𝐹𝑥)(-g𝐺)(𝐹𝑥)))
735, 11, 19grpsubid 18903 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐺)) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7438, 39, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) = 0 )
7511subg0cl 19013 . . . . . . . . . . . . . . . 16 (((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7663, 75syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7774, 76eqeltrd 2828 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7877ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑥)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
7972, 78eqeltrd 2828 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ 𝑦 = 𝑥) → ((𝐹𝑥)(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8063ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
8180, 75syl 17 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8250, 61, 60mrcssidd 17531 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
8382ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
841, 12, 13, 18dprdfcl 19894 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (𝐹𝑦) ∈ (𝑆𝑦))
8584adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆𝑦))
8653ffnd 6653 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → 𝑆 Fn 𝐼)
8786ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑆 Fn 𝐼)
88 difssd 4088 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐼 ∖ {𝑥}) ⊆ 𝐼)
89 df-ne 2926 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 ↔ ¬ 𝑦 = 𝑥)
90 eldifsn 4737 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
9190biimpri 228 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐼𝑦𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9289, 91sylan2br 595 . . . . . . . . . . . . . . . . 17 ((𝑦𝐼 ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
9392adantll 714 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → 𝑦 ∈ (𝐼 ∖ {𝑥}))
94 fnfvima 7169 . . . . . . . . . . . . . . . 16 ((𝑆 Fn 𝐼 ∧ (𝐼 ∖ {𝑥}) ⊆ 𝐼𝑦 ∈ (𝐼 ∖ {𝑥})) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9587, 88, 93, 94syl3anc 1373 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
96 elunii 4863 . . . . . . . . . . . . . . 15 (((𝐹𝑦) ∈ (𝑆𝑦) ∧ (𝑆𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥}))) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9785, 95, 96syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ (𝑆 “ (𝐼 ∖ {𝑥})))
9883, 97sseldd 3936 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
9919subgsubcl 19016 . . . . . . . . . . . . 13 ((((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) ∧ 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))) ∧ (𝐹𝑦) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10080, 81, 98, 99syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) ∧ ¬ 𝑦 = 𝑥) → ( 0 (-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10167, 69, 79, 100ifbothda 4515 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) ∧ 𝑦𝐼) → (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
102101fmpttd 7049 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))):𝐼⟶((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10320simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ if(𝑦 = 𝑥, (𝐹𝑥), 0 )) ∘f (-g𝐺)𝐹) ∈ 𝑊)
10432, 103eqeltrrd 2829 . . . . . . . . . . 11 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ∈ 𝑊)
1051, 12, 13, 104, 44dprdfcntz 19896 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) ⊆ ((Cntz‘𝐺)‘ran (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))))
1061, 12, 13, 104dprdffsupp 19895 . . . . . . . . . 10 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦))) finSupp 0 )
10711, 44, 47, 23, 65, 102, 105, 106gsumzsubmcl 19797 . . . . . . . . 9 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐺 Σg (𝑦𝐼 ↦ (if(𝑦 = 𝑥, (𝐹𝑥), 0 )(-g𝐺)(𝐹𝑦)))) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10843, 107eqeltrrd 2829 . . . . . . . 8 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥}))))
10910, 108elind 4151 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))))
11012, 13, 14, 11, 61dprddisj 19890 . . . . . . 7 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
111109, 110eleqtrd 2830 . . . . . 6 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ { 0 })
112 elsni 4594 . . . . . 6 ((𝐹𝑥) ∈ { 0 } → (𝐹𝑥) = 0 )
113111, 112syl 17 . . . . 5 (((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) ∧ 𝑥𝐼) → (𝐹𝑥) = 0 )
114113mpteq2dva 5185 . . . 4 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → (𝑥𝐼 ↦ (𝐹𝑥)) = (𝑥𝐼0 ))
1158, 114eqtrd 2764 . . 3 ((𝜑 ∧ (𝐺 Σg 𝐹) = 0 ) → 𝐹 = (𝑥𝐼0 ))
116115ex 412 . 2 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
11711gsumz 18710 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐼 ∈ V) → (𝐺 Σg (𝑥𝐼0 )) = 0 )
11846, 22, 117syl2anc 584 . . 3 (𝜑 → (𝐺 Σg (𝑥𝐼0 )) = 0 )
119 oveq2 7357 . . . 4 (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐼0 )))
120119eqeq1d 2731 . . 3 (𝐹 = (𝑥𝐼0 ) → ((𝐺 Σg 𝐹) = 0 ↔ (𝐺 Σg (𝑥𝐼0 )) = 0 ))
121118, 120syl5ibrcom 247 . 2 (𝜑 → (𝐹 = (𝑥𝐼0 ) → (𝐺 Σg 𝐹) = 0 ))
122116, 121impbid 212 1 (𝜑 → ((𝐺 Σg 𝐹) = 0𝐹 = (𝑥𝐼0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  ifcif 4476  𝒫 cpw 4551  {csn 4577   cuni 4858   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  Xcixp 8824   finSupp cfsupp 9251  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Moorecmre 17484  mrClscmrc 17485  ACScacs 17487  Mndcmnd 18608  SubMndcsubmnd 18656  Grpcgrp 18812  -gcsg 18814  SubGrpcsubg 18999  Cntzccntz 19194   DProd cdprd 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-gim 19138  df-cntz 19196  df-oppg 19225  df-cmn 19661  df-dprd 19876
This theorem is referenced by:  dprdf11  19904
  Copyright terms: Public domain W3C validator