| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprdlub | Structured version Visualization version GIF version | ||
| Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdlub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprdlub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| dprdlub.3 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| dprdlub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) |
| Ref | Expression |
|---|---|
| dprdlub | ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdlub.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 2 | dprdlub.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 3 | eqid 2734 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | eqid 2734 | . . . 4 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
| 5 | 3, 4 | dprdval 19992 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓))) |
| 6 | 1, 2, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓))) |
| 7 | eqid 2734 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
| 8 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺dom DProd 𝑆) |
| 9 | dprdgrp 19994 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
| 10 | grpmnd 18928 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺 ∈ Mnd) |
| 12 | 1, 2 | dprddomcld 19990 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐼 ∈ V) |
| 14 | dprdlub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 16 | subgsubm 19136 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺)) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑇 ∈ (SubMnd‘𝐺)) |
| 18 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 = 𝐼) |
| 19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) | |
| 20 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 21 | 4, 8, 18, 19, 20 | dprdff 20001 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:𝐼⟶(Base‘𝐺)) |
| 22 | 21 | ffnd 6717 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 Fn 𝐼) |
| 23 | dprdlub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) | |
| 24 | 23 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) |
| 25 | 4, 8, 18, 19 | dprdfcl 20002 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) |
| 26 | 24, 25 | sseldd 3964 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ 𝑇) |
| 27 | 26 | ralrimiva 3133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ∀𝑘 ∈ 𝐼 (𝑓‘𝑘) ∈ 𝑇) |
| 28 | ffnfv 7119 | . . . . . 6 ⊢ (𝑓:𝐼⟶𝑇 ↔ (𝑓 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑓‘𝑘) ∈ 𝑇)) | |
| 29 | 22, 27, 28 | sylanbrc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:𝐼⟶𝑇) |
| 30 | 4, 8, 18, 19, 7 | dprdfcntz 20004 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
| 31 | 4, 8, 18, 19 | dprdffsupp 20003 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 finSupp (0g‘𝐺)) |
| 32 | 3, 7, 11, 13, 17, 29, 30, 31 | gsumzsubmcl 19905 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝑇) |
| 33 | 32 | fmpttd 7115 | . . 3 ⊢ (𝜑 → (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓)):{ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}⟶𝑇) |
| 34 | 33 | frnd 6724 | . 2 ⊢ (𝜑 → ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓)) ⊆ 𝑇) |
| 35 | 6, 34 | eqsstrd 3998 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 Vcvv 3463 ⊆ wss 3931 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 ran crn 5666 Fn wfn 6536 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Xcixp 8919 finSupp cfsupp 9383 Basecbs 17230 0gc0g 17456 Σg cgsu 17457 Mndcmnd 18717 SubMndcsubmnd 18765 Grpcgrp 18921 SubGrpcsubg 19108 Cntzccntz 19303 DProd cdprd 19982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-0g 17458 df-gsum 17459 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-subg 19111 df-cntz 19305 df-dprd 19984 |
| This theorem is referenced by: dprdspan 20016 dprdz 20019 dprdcntz2 20027 dprd2dlem1 20030 dprdsplit 20037 ablfac1eu 20062 |
| Copyright terms: Public domain | W3C validator |