Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprdlub | Structured version Visualization version GIF version |
Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdlub.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprdlub.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dprdlub.3 | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
dprdlub.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) |
Ref | Expression |
---|---|
dprdlub | ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdlub.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
2 | dprdlub.2 | . . 3 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
3 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} | |
5 | 3, 4 | dprdval 19244 | . . 3 ⊢ ((𝐺dom DProd 𝑆 ∧ dom 𝑆 = 𝐼) → (𝐺 DProd 𝑆) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓))) |
6 | 1, 2, 5 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐺 DProd 𝑆) = ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓))) |
7 | eqid 2738 | . . . . 5 ⊢ (Cntz‘𝐺) = (Cntz‘𝐺) | |
8 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺dom DProd 𝑆) |
9 | dprdgrp 19246 | . . . . . 6 ⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) | |
10 | grpmnd 18226 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
11 | 8, 9, 10 | 3syl 18 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐺 ∈ Mnd) |
12 | 1, 2 | dprddomcld 19242 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
13 | 12 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝐼 ∈ V) |
14 | dprdlub.3 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
15 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑇 ∈ (SubGrp‘𝐺)) |
16 | subgsubm 18419 | . . . . . 6 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ∈ (SubMnd‘𝐺)) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑇 ∈ (SubMnd‘𝐺)) |
18 | 2 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → dom 𝑆 = 𝐼) |
19 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) | |
20 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
21 | 4, 8, 18, 19, 20 | dprdff 19253 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:𝐼⟶(Base‘𝐺)) |
22 | 21 | ffnd 6505 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 Fn 𝐼) |
23 | dprdlub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) | |
24 | 23 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑆‘𝑘) ⊆ 𝑇) |
25 | 4, 8, 18, 19 | dprdfcl 19254 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ (𝑆‘𝑘)) |
26 | 24, 25 | sseldd 3878 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) ∧ 𝑘 ∈ 𝐼) → (𝑓‘𝑘) ∈ 𝑇) |
27 | 26 | ralrimiva 3096 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ∀𝑘 ∈ 𝐼 (𝑓‘𝑘) ∈ 𝑇) |
28 | ffnfv 6892 | . . . . . 6 ⊢ (𝑓:𝐼⟶𝑇 ↔ (𝑓 Fn 𝐼 ∧ ∀𝑘 ∈ 𝐼 (𝑓‘𝑘) ∈ 𝑇)) | |
29 | 22, 27, 28 | sylanbrc 586 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓:𝐼⟶𝑇) |
30 | 4, 8, 18, 19, 7 | dprdfcntz 19256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → ran 𝑓 ⊆ ((Cntz‘𝐺)‘ran 𝑓)) |
31 | 4, 8, 18, 19 | dprdffsupp 19255 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → 𝑓 finSupp (0g‘𝐺)) |
32 | 3, 7, 11, 13, 17, 29, 30, 31 | gsumzsubmcl 19157 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) → (𝐺 Σg 𝑓) ∈ 𝑇) |
33 | 32 | fmpttd 6889 | . . 3 ⊢ (𝜑 → (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓)):{ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}⟶𝑇) |
34 | 33 | frnd 6512 | . 2 ⊢ (𝜑 → ran (𝑓 ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↦ (𝐺 Σg 𝑓)) ⊆ 𝑇) |
35 | 6, 34 | eqsstrd 3915 | 1 ⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {crab 3057 Vcvv 3398 ⊆ wss 3843 class class class wbr 5030 ↦ cmpt 5110 dom cdm 5525 ran crn 5526 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 Xcixp 8507 finSupp cfsupp 8906 Basecbs 16586 0gc0g 16816 Σg cgsu 16817 Mndcmnd 18027 SubMndcsubmnd 18071 Grpcgrp 18219 SubGrpcsubg 18391 Cntzccntz 18563 DProd cdprd 19234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-fzo 13125 df-seq 13461 df-hash 13783 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-0g 16818 df-gsum 16819 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-grp 18222 df-minusg 18223 df-subg 18394 df-cntz 18565 df-dprd 19236 |
This theorem is referenced by: dprdspan 19268 dprdz 19271 dprdcntz2 19279 dprd2dlem1 19282 dprdsplit 19289 ablfac1eu 19314 |
Copyright terms: Public domain | W3C validator |