|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > efmndtset | Structured version Visualization version GIF version | ||
| Description: The topology of the monoid of endofunctions on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| efmndtset.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) | 
| Ref | Expression | 
|---|---|
| efmndtset | ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvex 6918 | . . 3 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) ∈ V | |
| 2 | eqid 2736 | . . . 4 ⊢ {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
| 3 | 2 | topgrptset 17409 | . . 3 ⊢ ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ V → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) | 
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) | 
| 5 | efmndtset.g | . . . 4 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 6 | eqid 2736 | . . . 4 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 7 | eqid 2736 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) | |
| 8 | eqid 2736 | . . . 4 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
| 9 | 5, 6, 7, 8 | efmnd 18884 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) | 
| 10 | 9 | fveq2d 6909 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘𝐺) = (TopSet‘{〈(Base‘ndx), (𝐴 ↑m 𝐴)〉, 〈(+g‘ndx), (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) | 
| 11 | 4, 10 | eqtr4id 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 𝒫 cpw 4599 {csn 4625 {ctp 4629 〈cop 4631 × cxp 5682 ∘ ccom 5688 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 ↑m cmap 8867 ndxcnx 17231 Basecbs 17248 +gcplusg 17298 TopSetcts 17304 ∏tcpt 17484 EndoFMndcefmnd 18882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-tset 17317 df-efmnd 18883 | 
| This theorem is referenced by: efmndtopn 18897 symgtset 19418 | 
| Copyright terms: Public domain | W3C validator |