MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Visualization version   GIF version

Theorem fbasfip 23762
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))

Proof of Theorem fbasfip
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3933 . . . . . 6 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin))
2 elpwi 4573 . . . . . . 7 (𝑦 ∈ 𝒫 𝐹𝑦𝐹)
32anim1i 615 . . . . . 6 ((𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin) → (𝑦𝐹𝑦 ∈ Fin))
41, 3sylbi 217 . . . . 5 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦𝐹𝑦 ∈ Fin))
5 fbssint 23732 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑦 ∈ Fin) → ∃𝑧𝐹 𝑧 𝑦)
653expb 1120 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦𝐹𝑦 ∈ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
74, 6sylan2 593 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
8 0nelfb 23725 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
98ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ ∅ ∈ 𝐹)
10 eleq1 2817 . . . . . . . . . 10 (𝑧 = ∅ → (𝑧𝐹 ↔ ∅ ∈ 𝐹))
1110biimpcd 249 . . . . . . . . 9 (𝑧𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹))
1211adantl 481 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹))
139, 12mtod 198 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 = ∅)
14 ss0 4368 . . . . . . 7 (𝑧 ⊆ ∅ → 𝑧 = ∅)
1513, 14nsyl 140 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 ⊆ ∅)
1615adantrr 717 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ 𝑧 ⊆ ∅)
17 sseq2 3976 . . . . . . 7 (∅ = 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 𝑦))
1817biimprcd 250 . . . . . 6 (𝑧 𝑦 → (∅ = 𝑦𝑧 ⊆ ∅))
1918ad2antll 729 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → (∅ = 𝑦𝑧 ⊆ ∅))
2016, 19mtod 198 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ ∅ = 𝑦)
217, 20rexlimddv 3141 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = 𝑦)
2221nrexdv 3129 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦)
23 0ex 5265 . . 3 ∅ ∈ V
24 elfi 9371 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2523, 24mpan 690 . 2 (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2622, 25mtbird 325 1 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   cint 4913  cfv 6514  Fincfn 8921  ficfi 9368  fBascfbas 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369  df-fbas 21268
This theorem is referenced by:  fbunfip  23763
  Copyright terms: Public domain W3C validator