Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fbasfip | Structured version Visualization version GIF version |
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fbasfip | ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3907 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin)) | |
2 | elpwi 4547 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹) | |
3 | 2 | anim1i 614 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
4 | 1, 3 | sylbi 216 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
5 | fbssint 22970 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) | |
6 | 5 | 3expb 1118 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
7 | 4, 6 | sylan2 592 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
8 | 0nelfb 22963 | . . . . . . . . 9 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
9 | 8 | ad2antrr 722 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
10 | eleq1 2827 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
11 | 10 | biimpcd 248 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
12 | 11 | adantl 481 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
13 | 9, 12 | mtod 197 | . . . . . . 7 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 = ∅) |
14 | ss0 4337 | . . . . . . 7 ⊢ (𝑧 ⊆ ∅ → 𝑧 = ∅) | |
15 | 13, 14 | nsyl 140 | . . . . . 6 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 ⊆ ∅) |
16 | 15 | adantrr 713 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ 𝑧 ⊆ ∅) |
17 | sseq2 3951 | . . . . . . 7 ⊢ (∅ = ∩ 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦)) | |
18 | 17 | biimprcd 249 | . . . . . 6 ⊢ (𝑧 ⊆ ∩ 𝑦 → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
19 | 18 | ad2antll 725 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
20 | 16, 19 | mtod 197 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ ∅ = ∩ 𝑦) |
21 | 7, 20 | rexlimddv 3221 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = ∩ 𝑦) |
22 | 21 | nrexdv 3199 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦) |
23 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
24 | elfi 9133 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) | |
25 | 23, 24 | mpan 686 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) |
26 | 22, 25 | mtbird 324 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 ∅c0 4261 𝒫 cpw 4538 ∩ cint 4884 ‘cfv 6430 Fincfn 8707 ficfi 9130 fBascfbas 20566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-1o 8281 df-er 8472 df-en 8708 df-fin 8711 df-fi 9131 df-fbas 20575 |
This theorem is referenced by: fbunfip 23001 |
Copyright terms: Public domain | W3C validator |