MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Visualization version   GIF version

Theorem fbasfip 22473
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))

Proof of Theorem fbasfip
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3897 . . . . . 6 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin))
2 elpwi 4506 . . . . . . 7 (𝑦 ∈ 𝒫 𝐹𝑦𝐹)
32anim1i 617 . . . . . 6 ((𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin) → (𝑦𝐹𝑦 ∈ Fin))
41, 3sylbi 220 . . . . 5 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦𝐹𝑦 ∈ Fin))
5 fbssint 22443 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑦 ∈ Fin) → ∃𝑧𝐹 𝑧 𝑦)
653expb 1117 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦𝐹𝑦 ∈ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
74, 6sylan2 595 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
8 0nelfb 22436 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
98ad2antrr 725 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ ∅ ∈ 𝐹)
10 eleq1 2877 . . . . . . . . . 10 (𝑧 = ∅ → (𝑧𝐹 ↔ ∅ ∈ 𝐹))
1110biimpcd 252 . . . . . . . . 9 (𝑧𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹))
1211adantl 485 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹))
139, 12mtod 201 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 = ∅)
14 ss0 4306 . . . . . . 7 (𝑧 ⊆ ∅ → 𝑧 = ∅)
1513, 14nsyl 142 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 ⊆ ∅)
1615adantrr 716 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ 𝑧 ⊆ ∅)
17 sseq2 3941 . . . . . . 7 (∅ = 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 𝑦))
1817biimprcd 253 . . . . . 6 (𝑧 𝑦 → (∅ = 𝑦𝑧 ⊆ ∅))
1918ad2antll 728 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → (∅ = 𝑦𝑧 ⊆ ∅))
2016, 19mtod 201 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ ∅ = 𝑦)
217, 20rexlimddv 3250 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = 𝑦)
2221nrexdv 3229 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦)
23 0ex 5175 . . 3 ∅ ∈ V
24 elfi 8861 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2523, 24mpan 689 . 2 (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2622, 25mtbird 328 1 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497   cint 4838  cfv 6324  Fincfn 8492  ficfi 8858  fBascfbas 20079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-fbas 20088
This theorem is referenced by:  fbunfip  22474
  Copyright terms: Public domain W3C validator