MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Visualization version   GIF version

Theorem fbasfip 22000
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))

Proof of Theorem fbasfip
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3994 . . . . . 6 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin))
2 elpwi 4359 . . . . . . 7 (𝑦 ∈ 𝒫 𝐹𝑦𝐹)
32anim1i 609 . . . . . 6 ((𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin) → (𝑦𝐹𝑦 ∈ Fin))
41, 3sylbi 209 . . . . 5 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦𝐹𝑦 ∈ Fin))
5 fbssint 21970 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑦 ∈ Fin) → ∃𝑧𝐹 𝑧 𝑦)
653expb 1150 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦𝐹𝑦 ∈ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
74, 6sylan2 587 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
8 0nelfb 21963 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
98ad2antrr 718 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ ∅ ∈ 𝐹)
10 eleq1 2866 . . . . . . . . . 10 (𝑧 = ∅ → (𝑧𝐹 ↔ ∅ ∈ 𝐹))
1110biimpcd 241 . . . . . . . . 9 (𝑧𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹))
1211adantl 474 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹))
139, 12mtod 190 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 = ∅)
14 ss0 4170 . . . . . . 7 (𝑧 ⊆ ∅ → 𝑧 = ∅)
1513, 14nsyl 138 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 ⊆ ∅)
1615adantrr 709 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ 𝑧 ⊆ ∅)
17 sseq2 3823 . . . . . . 7 (∅ = 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 𝑦))
1817biimprcd 242 . . . . . 6 (𝑧 𝑦 → (∅ = 𝑦𝑧 ⊆ ∅))
1918ad2antll 721 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → (∅ = 𝑦𝑧 ⊆ ∅))
2016, 19mtod 190 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ ∅ = 𝑦)
217, 20rexlimddv 3216 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = 𝑦)
2221nrexdv 3181 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦)
23 0ex 4984 . . 3 ∅ ∈ V
24 elfi 8561 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2523, 24mpan 682 . 2 (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2622, 25mtbird 317 1 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3090  Vcvv 3385  cin 3768  wss 3769  c0 4115  𝒫 cpw 4349   cint 4667  cfv 6101  Fincfn 8195  ficfi 8558  fBascfbas 20056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-fin 8199  df-fi 8559  df-fbas 20065
This theorem is referenced by:  fbunfip  22001
  Copyright terms: Public domain W3C validator