| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fbasfip | Structured version Visualization version GIF version | ||
| Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| fbasfip | ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin)) | |
| 2 | elpwi 4573 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹) | |
| 3 | 2 | anim1i 615 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
| 4 | 1, 3 | sylbi 217 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
| 5 | fbssint 23732 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) | |
| 6 | 5 | 3expb 1120 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
| 7 | 4, 6 | sylan2 593 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
| 8 | 0nelfb 23725 | . . . . . . . . 9 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
| 9 | 8 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
| 10 | eleq1 2817 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
| 11 | 10 | biimpcd 249 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
| 12 | 11 | adantl 481 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
| 13 | 9, 12 | mtod 198 | . . . . . . 7 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 = ∅) |
| 14 | ss0 4368 | . . . . . . 7 ⊢ (𝑧 ⊆ ∅ → 𝑧 = ∅) | |
| 15 | 13, 14 | nsyl 140 | . . . . . 6 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 ⊆ ∅) |
| 16 | 15 | adantrr 717 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ 𝑧 ⊆ ∅) |
| 17 | sseq2 3976 | . . . . . . 7 ⊢ (∅ = ∩ 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦)) | |
| 18 | 17 | biimprcd 250 | . . . . . 6 ⊢ (𝑧 ⊆ ∩ 𝑦 → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
| 19 | 18 | ad2antll 729 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
| 20 | 16, 19 | mtod 198 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ ∅ = ∩ 𝑦) |
| 21 | 7, 20 | rexlimddv 3141 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = ∩ 𝑦) |
| 22 | 21 | nrexdv 3129 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦) |
| 23 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 24 | elfi 9371 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) | |
| 25 | 23, 24 | mpan 690 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) |
| 26 | 22, 25 | mtbird 325 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∩ cint 4913 ‘cfv 6514 Fincfn 8921 ficfi 9368 fBascfbas 21259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-fin 8925 df-fi 9369 df-fbas 21268 |
| This theorem is referenced by: fbunfip 23763 |
| Copyright terms: Public domain | W3C validator |