![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbasfip | Structured version Visualization version GIF version |
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fbasfip | ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3965 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin)) | |
2 | elpwi 4613 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹) | |
3 | 2 | anim1i 613 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
4 | 1, 3 | sylbi 216 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
5 | fbssint 23762 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) | |
6 | 5 | 3expb 1117 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
7 | 4, 6 | sylan2 591 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
8 | 0nelfb 23755 | . . . . . . . . 9 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
9 | 8 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
10 | eleq1 2817 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
11 | 10 | biimpcd 248 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
12 | 11 | adantl 480 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
13 | 9, 12 | mtod 197 | . . . . . . 7 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 = ∅) |
14 | ss0 4402 | . . . . . . 7 ⊢ (𝑧 ⊆ ∅ → 𝑧 = ∅) | |
15 | 13, 14 | nsyl 140 | . . . . . 6 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 ⊆ ∅) |
16 | 15 | adantrr 715 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ 𝑧 ⊆ ∅) |
17 | sseq2 4008 | . . . . . . 7 ⊢ (∅ = ∩ 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦)) | |
18 | 17 | biimprcd 249 | . . . . . 6 ⊢ (𝑧 ⊆ ∩ 𝑦 → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
19 | 18 | ad2antll 727 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
20 | 16, 19 | mtod 197 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ ∅ = ∩ 𝑦) |
21 | 7, 20 | rexlimddv 3158 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = ∩ 𝑦) |
22 | 21 | nrexdv 3146 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦) |
23 | 0ex 5311 | . . 3 ⊢ ∅ ∈ V | |
24 | elfi 9444 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) | |
25 | 23, 24 | mpan 688 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) |
26 | 22, 25 | mtbird 324 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 Vcvv 3473 ∩ cin 3948 ⊆ wss 3949 ∅c0 4326 𝒫 cpw 4606 ∩ cint 4953 ‘cfv 6553 Fincfn 8970 ficfi 9441 fBascfbas 21274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7877 df-1o 8493 df-er 8731 df-en 8971 df-fin 8974 df-fi 9442 df-fbas 21283 |
This theorem is referenced by: fbunfip 23793 |
Copyright terms: Public domain | W3C validator |