![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbasfip | Structured version Visualization version GIF version |
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fbasfip | ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin)) | |
2 | elpwi 4608 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹) | |
3 | 2 | anim1i 615 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
4 | 1, 3 | sylbi 216 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
5 | fbssint 23333 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) | |
6 | 5 | 3expb 1120 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
7 | 4, 6 | sylan2 593 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
8 | 0nelfb 23326 | . . . . . . . . 9 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
9 | 8 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
10 | eleq1 2821 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
11 | 10 | biimpcd 248 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
12 | 11 | adantl 482 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
13 | 9, 12 | mtod 197 | . . . . . . 7 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 = ∅) |
14 | ss0 4397 | . . . . . . 7 ⊢ (𝑧 ⊆ ∅ → 𝑧 = ∅) | |
15 | 13, 14 | nsyl 140 | . . . . . 6 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 ⊆ ∅) |
16 | 15 | adantrr 715 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ 𝑧 ⊆ ∅) |
17 | sseq2 4007 | . . . . . . 7 ⊢ (∅ = ∩ 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦)) | |
18 | 17 | biimprcd 249 | . . . . . 6 ⊢ (𝑧 ⊆ ∩ 𝑦 → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
19 | 18 | ad2antll 727 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
20 | 16, 19 | mtod 197 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ ∅ = ∩ 𝑦) |
21 | 7, 20 | rexlimddv 3161 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = ∩ 𝑦) |
22 | 21 | nrexdv 3149 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦) |
23 | 0ex 5306 | . . 3 ⊢ ∅ ∈ V | |
24 | elfi 9404 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) | |
25 | 23, 24 | mpan 688 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) |
26 | 22, 25 | mtbird 324 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 𝒫 cpw 4601 ∩ cint 4949 ‘cfv 6540 Fincfn 8935 ficfi 9401 fBascfbas 20924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-en 8936 df-fin 8939 df-fi 9402 df-fbas 20933 |
This theorem is referenced by: fbunfip 23364 |
Copyright terms: Public domain | W3C validator |