Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sin2h Structured version   Visualization version   GIF version

Theorem sin2h 37611
Description: Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
Assertion
Ref Expression
sin2h (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))

Proof of Theorem sin2h
StepHypRef Expression
1 0re 11183 . . . . . 6 0 ∈ ℝ
2 2re 12267 . . . . . . 7 2 ∈ ℝ
3 pire 26373 . . . . . . 7 π ∈ ℝ
42, 3remulcli 11197 . . . . . 6 (2 · π) ∈ ℝ
5 iccssre 13397 . . . . . 6 ((0 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (0[,](2 · π)) ⊆ ℝ)
61, 4, 5mp2an 692 . . . . 5 (0[,](2 · π)) ⊆ ℝ
76sseli 3945 . . . 4 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℝ)
87rehalfcld 12436 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ ℝ)
98resincld 16118 . 2 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) ∈ ℝ)
10 1re 11181 . . . . . 6 1 ∈ ℝ
11 recoscl 16116 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
12 resubcl 11493 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
1310, 11, 12sylancr 587 . . . . 5 (𝐴 ∈ ℝ → (1 − (cos‘𝐴)) ∈ ℝ)
1413rehalfcld 12436 . . . 4 (𝐴 ∈ ℝ → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
15 cosbnd 16156 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1615simprd 495 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
17 subge0 11698 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
1810, 11, 17sylancr 587 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
19 halfnneg2 12420 . . . . . . 7 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2013, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2118, 20bitr3d 281 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2216, 21mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
2314, 22resqrtcld 15391 . . 3 (𝐴 ∈ ℝ → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
247, 23syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
251, 4elicc2i 13380 . . . 4 (𝐴 ∈ (0[,](2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)))
26 halfnneg2 12420 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
27 2pos 12296 . . . . . . . . . . 11 0 < 2
282, 27pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
29 ledivmul 12066 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
303, 28, 29mp3an23 1455 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
3130bicomd 223 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ (2 · π) ↔ (𝐴 / 2) ≤ π))
3226, 31anbi12d 632 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
33 rehalfcl 12416 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3433rexrd 11231 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
35 0xr 11228 . . . . . . . . 9 0 ∈ ℝ*
363rexri 11239 . . . . . . . . 9 π ∈ ℝ*
37 elicc4 13381 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3835, 36, 37mp3an12 1453 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3934, 38syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
4032, 39bitr4d 282 . . . . . 6 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (𝐴 / 2) ∈ (0[,]π)))
4140biimpd 229 . . . . 5 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π)))
42413impib 1116 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π))
4325, 42sylbi 217 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ (0[,]π))
44 sinq12ge0 26424 . . 3 ((𝐴 / 2) ∈ (0[,]π) → 0 ≤ (sin‘(𝐴 / 2)))
4543, 44syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (sin‘(𝐴 / 2)))
4614, 22sqrtge0d 15394 . . 3 (𝐴 ∈ ℝ → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
477, 46syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
487recnd 11209 . . 3 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℂ)
49 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
50 coscl 16102 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
51 subcl 11427 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
5249, 50, 51sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘𝐴)) ∈ ℂ)
5352halfcld 12434 . . . . 5 (𝐴 ∈ ℂ → ((1 − (cos‘𝐴)) / 2) ∈ ℂ)
5453sqsqrtd 15415 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 − (cos‘𝐴)) / 2))↑2) = ((1 − (cos‘𝐴)) / 2))
55 halfcl 12415 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
56 coscl 16102 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
5756sqcld 14116 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
58 2cn 12268 . . . . . . . . . . . 12 2 ∈ ℂ
59 mulcom 11161 . . . . . . . . . . . 12 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6057, 58, 59sylancl 586 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6160oveq2d 7406 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))))
6258mullidi 11186 . . . . . . . . . . . 12 (1 · 2) = 2
63 df-2 12256 . . . . . . . . . . . 12 2 = (1 + 1)
6462, 63eqtri 2753 . . . . . . . . . . 11 (1 · 2) = (1 + 1)
6564oveq1i 7400 . . . . . . . . . 10 ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2)))
6661, 65eqtrdi 2781 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
67 subdir 11619 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6849, 58, 67mp3an13 1454 . . . . . . . . . 10 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6957, 68syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
70 mulcl 11159 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
7158, 57, 70sylancr 587 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
72 subsub3 11461 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7349, 49, 72mp3an13 1454 . . . . . . . . . 10 ((2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7471, 73syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7566, 69, 743eqtr4d 2775 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
76 sincl 16101 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
7776sqcld 14116 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
7877, 57pncand 11541 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = ((sin‘(𝐴 / 2))↑2))
79 sincossq 16151 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) = 1)
8079oveq1d 7405 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = (1 − ((cos‘(𝐴 / 2))↑2)))
8178, 80eqtr3d 2767 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = (1 − ((cos‘(𝐴 / 2))↑2)))
8281oveq1d 7405 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = ((1 − ((cos‘(𝐴 / 2))↑2)) · 2))
83 cos2t 16153 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8483oveq2d 7406 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8575, 82, 843eqtr4d 2775 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
8655, 85syl 17 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
87 2ne0 12297 . . . . . . . . 9 2 ≠ 0
88 divcan2 11852 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
8958, 87, 88mp3an23 1455 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
9089fveq2d 6865 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
9190oveq2d 7406 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − (cos‘𝐴)))
9286, 91eqtrd 2765 . . . . 5 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘𝐴)))
9392oveq1d 7405 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((1 − (cos‘𝐴)) / 2))
9455sincld 16105 . . . . . 6 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
9594sqcld 14116 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
96 divcan4 11871 . . . . . 6 ((((sin‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9758, 87, 96mp3an23 1455 . . . . 5 (((sin‘(𝐴 / 2))↑2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9895, 97syl 17 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9954, 93, 983eqtr2rd 2772 . . 3 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
10048, 99syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
1019, 24, 45, 47, 100sq11d 14230 1 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  [,]cicc 13316  cexp 14033  csqrt 15206  sincsin 16036  cosccos 16037  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  tan2h  37613
  Copyright terms: Public domain W3C validator