Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sin2h Structured version   Visualization version   GIF version

Theorem sin2h 35504
Description: Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
Assertion
Ref Expression
sin2h (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))

Proof of Theorem sin2h
StepHypRef Expression
1 0re 10835 . . . . . 6 0 ∈ ℝ
2 2re 11904 . . . . . . 7 2 ∈ ℝ
3 pire 25348 . . . . . . 7 π ∈ ℝ
42, 3remulcli 10849 . . . . . 6 (2 · π) ∈ ℝ
5 iccssre 13017 . . . . . 6 ((0 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (0[,](2 · π)) ⊆ ℝ)
61, 4, 5mp2an 692 . . . . 5 (0[,](2 · π)) ⊆ ℝ
76sseli 3896 . . . 4 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℝ)
87rehalfcld 12077 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ ℝ)
98resincld 15704 . 2 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) ∈ ℝ)
10 1re 10833 . . . . . 6 1 ∈ ℝ
11 recoscl 15702 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
12 resubcl 11142 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
1310, 11, 12sylancr 590 . . . . 5 (𝐴 ∈ ℝ → (1 − (cos‘𝐴)) ∈ ℝ)
1413rehalfcld 12077 . . . 4 (𝐴 ∈ ℝ → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
15 cosbnd 15742 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1615simprd 499 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
17 subge0 11345 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
1810, 11, 17sylancr 590 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
19 halfnneg2 12061 . . . . . . 7 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2013, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2118, 20bitr3d 284 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2216, 21mpbid 235 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
2314, 22resqrtcld 14981 . . 3 (𝐴 ∈ ℝ → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
247, 23syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
251, 4elicc2i 13001 . . . 4 (𝐴 ∈ (0[,](2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)))
26 halfnneg2 12061 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
27 2pos 11933 . . . . . . . . . . 11 0 < 2
282, 27pm3.2i 474 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
29 ledivmul 11708 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
303, 28, 29mp3an23 1455 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
3130bicomd 226 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ (2 · π) ↔ (𝐴 / 2) ≤ π))
3226, 31anbi12d 634 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
33 rehalfcl 12056 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3433rexrd 10883 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
35 0xr 10880 . . . . . . . . 9 0 ∈ ℝ*
363rexri 10891 . . . . . . . . 9 π ∈ ℝ*
37 elicc4 13002 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3835, 36, 37mp3an12 1453 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3934, 38syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
4032, 39bitr4d 285 . . . . . 6 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (𝐴 / 2) ∈ (0[,]π)))
4140biimpd 232 . . . . 5 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π)))
42413impib 1118 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π))
4325, 42sylbi 220 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ (0[,]π))
44 sinq12ge0 25398 . . 3 ((𝐴 / 2) ∈ (0[,]π) → 0 ≤ (sin‘(𝐴 / 2)))
4543, 44syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (sin‘(𝐴 / 2)))
4614, 22sqrtge0d 14984 . . 3 (𝐴 ∈ ℝ → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
477, 46syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
487recnd 10861 . . 3 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℂ)
49 ax-1cn 10787 . . . . . . 7 1 ∈ ℂ
50 coscl 15688 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
51 subcl 11077 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
5249, 50, 51sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘𝐴)) ∈ ℂ)
5352halfcld 12075 . . . . 5 (𝐴 ∈ ℂ → ((1 − (cos‘𝐴)) / 2) ∈ ℂ)
5453sqsqrtd 15003 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 − (cos‘𝐴)) / 2))↑2) = ((1 − (cos‘𝐴)) / 2))
55 halfcl 12055 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
56 coscl 15688 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
5756sqcld 13714 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
58 2cn 11905 . . . . . . . . . . . 12 2 ∈ ℂ
59 mulcom 10815 . . . . . . . . . . . 12 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6057, 58, 59sylancl 589 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6160oveq2d 7229 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))))
6258mulid2i 10838 . . . . . . . . . . . 12 (1 · 2) = 2
63 df-2 11893 . . . . . . . . . . . 12 2 = (1 + 1)
6462, 63eqtri 2765 . . . . . . . . . . 11 (1 · 2) = (1 + 1)
6564oveq1i 7223 . . . . . . . . . 10 ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2)))
6661, 65eqtrdi 2794 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
67 subdir 11266 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6849, 58, 67mp3an13 1454 . . . . . . . . . 10 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6957, 68syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
70 mulcl 10813 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
7158, 57, 70sylancr 590 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
72 subsub3 11110 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7349, 49, 72mp3an13 1454 . . . . . . . . . 10 ((2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7471, 73syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7566, 69, 743eqtr4d 2787 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
76 sincl 15687 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
7776sqcld 13714 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
7877, 57pncand 11190 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = ((sin‘(𝐴 / 2))↑2))
79 sincossq 15737 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) = 1)
8079oveq1d 7228 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = (1 − ((cos‘(𝐴 / 2))↑2)))
8178, 80eqtr3d 2779 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = (1 − ((cos‘(𝐴 / 2))↑2)))
8281oveq1d 7228 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = ((1 − ((cos‘(𝐴 / 2))↑2)) · 2))
83 cos2t 15739 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8483oveq2d 7229 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8575, 82, 843eqtr4d 2787 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
8655, 85syl 17 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
87 2ne0 11934 . . . . . . . . 9 2 ≠ 0
88 divcan2 11498 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
8958, 87, 88mp3an23 1455 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
9089fveq2d 6721 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
9190oveq2d 7229 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − (cos‘𝐴)))
9286, 91eqtrd 2777 . . . . 5 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘𝐴)))
9392oveq1d 7228 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((1 − (cos‘𝐴)) / 2))
9455sincld 15691 . . . . . 6 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
9594sqcld 13714 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
96 divcan4 11517 . . . . . 6 ((((sin‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9758, 87, 96mp3an23 1455 . . . . 5 (((sin‘(𝐴 / 2))↑2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9895, 97syl 17 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9954, 93, 983eqtr2rd 2784 . . 3 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
10048, 99syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
1019, 24, 45, 47, 100sq11d 13827 1 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wss 3866   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  *cxr 10866   < clt 10867  cle 10868  cmin 11062  -cneg 11063   / cdiv 11489  2c2 11885  [,]cicc 12938  cexp 13635  csqrt 14796  sincsin 15625  cosccos 15626  πcpi 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  tan2h  35506
  Copyright terms: Public domain W3C validator