Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sin2h Structured version   Visualization version   GIF version

Theorem sin2h 37570
Description: Half-angle rule for sine. (Contributed by Brendan Leahy, 3-Aug-2018.)
Assertion
Ref Expression
sin2h (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))

Proof of Theorem sin2h
StepHypRef Expression
1 0re 11292 . . . . . 6 0 ∈ ℝ
2 2re 12367 . . . . . . 7 2 ∈ ℝ
3 pire 26518 . . . . . . 7 π ∈ ℝ
42, 3remulcli 11306 . . . . . 6 (2 · π) ∈ ℝ
5 iccssre 13489 . . . . . 6 ((0 ∈ ℝ ∧ (2 · π) ∈ ℝ) → (0[,](2 · π)) ⊆ ℝ)
61, 4, 5mp2an 691 . . . . 5 (0[,](2 · π)) ⊆ ℝ
76sseli 4004 . . . 4 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℝ)
87rehalfcld 12540 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ ℝ)
98resincld 16191 . 2 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) ∈ ℝ)
10 1re 11290 . . . . . 6 1 ∈ ℝ
11 recoscl 16189 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
12 resubcl 11600 . . . . . 6 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 − (cos‘𝐴)) ∈ ℝ)
1310, 11, 12sylancr 586 . . . . 5 (𝐴 ∈ ℝ → (1 − (cos‘𝐴)) ∈ ℝ)
1413rehalfcld 12540 . . . 4 (𝐴 ∈ ℝ → ((1 − (cos‘𝐴)) / 2) ∈ ℝ)
15 cosbnd 16229 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1615simprd 495 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ≤ 1)
17 subge0 11803 . . . . . . 7 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
1810, 11, 17sylancr 586 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ (cos‘𝐴) ≤ 1))
19 halfnneg2 12524 . . . . . . 7 ((1 − (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2013, 19syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 ≤ (1 − (cos‘𝐴)) ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2118, 20bitr3d 281 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ↔ 0 ≤ ((1 − (cos‘𝐴)) / 2)))
2216, 21mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 − (cos‘𝐴)) / 2))
2314, 22resqrtcld 15466 . . 3 (𝐴 ∈ ℝ → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
247, 23syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → (√‘((1 − (cos‘𝐴)) / 2)) ∈ ℝ)
251, 4elicc2i 13473 . . . 4 (𝐴 ∈ (0[,](2 · π)) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)))
26 halfnneg2 12524 . . . . . . . 8 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 2)))
27 2pos 12396 . . . . . . . . . . 11 0 < 2
282, 27pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
29 ledivmul 12171 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
303, 28, 29mp3an23 1453 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 / 2) ≤ π ↔ 𝐴 ≤ (2 · π)))
3130bicomd 223 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ (2 · π) ↔ (𝐴 / 2) ≤ π))
3226, 31anbi12d 631 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
33 rehalfcl 12519 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
3433rexrd 11340 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
35 0xr 11337 . . . . . . . . 9 0 ∈ ℝ*
363rexri 11348 . . . . . . . . 9 π ∈ ℝ*
37 elicc4 13474 . . . . . . . . 9 ((0 ∈ ℝ* ∧ π ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3835, 36, 37mp3an12 1451 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
3934, 38syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (0[,]π) ↔ (0 ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ π)))
4032, 39bitr4d 282 . . . . . 6 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) ↔ (𝐴 / 2) ∈ (0[,]π)))
4140biimpd 229 . . . . 5 (𝐴 ∈ ℝ → ((0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π)))
42413impib 1116 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ (2 · π)) → (𝐴 / 2) ∈ (0[,]π))
4325, 42sylbi 217 . . 3 (𝐴 ∈ (0[,](2 · π)) → (𝐴 / 2) ∈ (0[,]π))
44 sinq12ge0 26568 . . 3 ((𝐴 / 2) ∈ (0[,]π) → 0 ≤ (sin‘(𝐴 / 2)))
4543, 44syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (sin‘(𝐴 / 2)))
4614, 22sqrtge0d 15469 . . 3 (𝐴 ∈ ℝ → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
477, 46syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → 0 ≤ (√‘((1 − (cos‘𝐴)) / 2)))
487recnd 11318 . . 3 (𝐴 ∈ (0[,](2 · π)) → 𝐴 ∈ ℂ)
49 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
50 coscl 16175 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
51 subcl 11535 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 − (cos‘𝐴)) ∈ ℂ)
5249, 50, 51sylancr 586 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘𝐴)) ∈ ℂ)
5352halfcld 12538 . . . . 5 (𝐴 ∈ ℂ → ((1 − (cos‘𝐴)) / 2) ∈ ℂ)
5453sqsqrtd 15488 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 − (cos‘𝐴)) / 2))↑2) = ((1 − (cos‘𝐴)) / 2))
55 halfcl 12518 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
56 coscl 16175 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
5756sqcld 14194 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
58 2cn 12368 . . . . . . . . . . . 12 2 ∈ ℂ
59 mulcom 11270 . . . . . . . . . . . 12 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6057, 58, 59sylancl 585 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((cos‘(𝐴 / 2))↑2) · 2) = (2 · ((cos‘(𝐴 / 2))↑2)))
6160oveq2d 7464 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))))
6258mullidi 11295 . . . . . . . . . . . 12 (1 · 2) = 2
63 df-2 12356 . . . . . . . . . . . 12 2 = (1 + 1)
6462, 63eqtri 2768 . . . . . . . . . . 11 (1 · 2) = (1 + 1)
6564oveq1i 7458 . . . . . . . . . 10 ((1 · 2) − (2 · ((cos‘(𝐴 / 2))↑2))) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2)))
6661, 65eqtrdi 2796 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
67 subdir 11724 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ) → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6849, 58, 67mp3an13 1452 . . . . . . . . . 10 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
6957, 68syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = ((1 · 2) − (((cos‘(𝐴 / 2))↑2) · 2)))
70 mulcl 11268 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
7158, 57, 70sylancr 586 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
72 subsub3 11568 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ ∧ 1 ∈ ℂ) → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7349, 49, 72mp3an13 1452 . . . . . . . . . 10 ((2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7471, 73syl 17 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = ((1 + 1) − (2 · ((cos‘(𝐴 / 2))↑2))))
7566, 69, 743eqtr4d 2790 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → ((1 − ((cos‘(𝐴 / 2))↑2)) · 2) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
76 sincl 16174 . . . . . . . . . . . 12 ((𝐴 / 2) ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
7776sqcld 14194 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
7877, 57pncand 11648 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = ((sin‘(𝐴 / 2))↑2))
79 sincossq 16224 . . . . . . . . . . 11 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) = 1)
8079oveq1d 7463 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) + ((cos‘(𝐴 / 2))↑2)) − ((cos‘(𝐴 / 2))↑2)) = (1 − ((cos‘(𝐴 / 2))↑2)))
8178, 80eqtr3d 2782 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = (1 − ((cos‘(𝐴 / 2))↑2)))
8281oveq1d 7463 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = ((1 − ((cos‘(𝐴 / 2))↑2)) · 2))
83 cos2t 16226 . . . . . . . . 9 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8483oveq2d 7464 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8575, 82, 843eqtr4d 2790 . . . . . . 7 ((𝐴 / 2) ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
8655, 85syl 17 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘(2 · (𝐴 / 2)))))
87 2ne0 12397 . . . . . . . . 9 2 ≠ 0
88 divcan2 11957 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
8958, 87, 88mp3an23 1453 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
9089fveq2d 6924 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
9190oveq2d 7464 . . . . . 6 (𝐴 ∈ ℂ → (1 − (cos‘(2 · (𝐴 / 2)))) = (1 − (cos‘𝐴)))
9286, 91eqtrd 2780 . . . . 5 (𝐴 ∈ ℂ → (((sin‘(𝐴 / 2))↑2) · 2) = (1 − (cos‘𝐴)))
9392oveq1d 7463 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((1 − (cos‘𝐴)) / 2))
9455sincld 16178 . . . . . 6 (𝐴 ∈ ℂ → (sin‘(𝐴 / 2)) ∈ ℂ)
9594sqcld 14194 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) ∈ ℂ)
96 divcan4 11976 . . . . . 6 ((((sin‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9758, 87, 96mp3an23 1453 . . . . 5 (((sin‘(𝐴 / 2))↑2) ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9895, 97syl 17 . . . 4 (𝐴 ∈ ℂ → ((((sin‘(𝐴 / 2))↑2) · 2) / 2) = ((sin‘(𝐴 / 2))↑2))
9954, 93, 983eqtr2rd 2787 . . 3 (𝐴 ∈ ℂ → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
10048, 99syl 17 . 2 (𝐴 ∈ (0[,](2 · π)) → ((sin‘(𝐴 / 2))↑2) = ((√‘((1 − (cos‘𝐴)) / 2))↑2))
1019, 24, 45, 47, 100sq11d 14307 1 (𝐴 ∈ (0[,](2 · π)) → (sin‘(𝐴 / 2)) = (√‘((1 − (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  [,]cicc 13410  cexp 14112  csqrt 15282  sincsin 16111  cosccos 16112  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  tan2h  37572
  Copyright terms: Public domain W3C validator