Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem1 | Structured version Visualization version GIF version |
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
fourierdlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
fourierdlem1.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
fourierdlem1.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
fourierdlem1.x | ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) |
Ref | Expression |
---|---|
fourierdlem1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13162 | . . 3 ⊢ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ* | |
2 | fourierdlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) | |
3 | 1, 2 | sselid 3919 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
4 | fourierdlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | iccssxr 13162 | . . . 4 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
6 | fourierdlem1.q | . . . . 5 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
7 | fourierdlem1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
8 | elfzofz 13403 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
10 | 6, 9 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
11 | 5, 10 | sselid 3919 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
12 | fourierdlem1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
13 | iccgelb 13135 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
14 | 4, 12, 10, 13 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
15 | fzofzp1 13484 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
16 | 7, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
17 | 6, 16 | ffvelrnd 6962 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
18 | 5, 17 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
19 | elicc4 13146 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) | |
20 | 11, 18, 3, 19 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) |
21 | 2, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1)))) |
22 | 21 | simpld 495 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ≤ 𝑋) |
23 | 4, 11, 3, 14, 22 | xrletrd 12896 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝑋) |
24 | iccleub 13134 | . . . 4 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1))) | |
25 | 11, 18, 2, 24 | syl3anc 1370 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝑄‘(𝐼 + 1))) |
26 | elicc4 13146 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) | |
27 | 4, 12, 18, 26 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) |
28 | 17, 27 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)) |
29 | 28 | simprd 496 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
30 | 3, 18, 12, 25, 29 | xrletrd 12896 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
31 | elicc1 13123 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) | |
32 | 4, 12, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
33 | 3, 23, 30, 32 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 ℝ*cxr 11008 ≤ cle 11010 [,]cicc 13082 ...cfz 13239 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-icc 13086 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: fourierdlem8 43656 fourierdlem73 43720 fourierdlem81 43728 fourierdlem92 43739 fourierdlem93 43740 |
Copyright terms: Public domain | W3C validator |