Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem1 Structured version   Visualization version   GIF version

Theorem fourierdlem1 41252
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem1.a (𝜑𝐴 ∈ ℝ*)
fourierdlem1.b (𝜑𝐵 ∈ ℝ*)
fourierdlem1.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem1.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem1.x (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
Assertion
Ref Expression
fourierdlem1 (𝜑𝑋 ∈ (𝐴[,]𝐵))

Proof of Theorem fourierdlem1
StepHypRef Expression
1 iccssxr 12568 . . 3 ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ*
2 fourierdlem1.x . . 3 (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
31, 2sseldi 3819 . 2 (𝜑𝑋 ∈ ℝ*)
4 fourierdlem1.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 iccssxr 12568 . . . 4 (𝐴[,]𝐵) ⊆ ℝ*
6 fourierdlem1.q . . . . 5 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem1.i . . . . . 6 (𝜑𝐼 ∈ (0..^𝑀))
8 elfzofz 12804 . . . . . 6 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
106, 9ffvelrnd 6624 . . . 4 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
115, 10sseldi 3819 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
12 fourierdlem1.b . . . 4 (𝜑𝐵 ∈ ℝ*)
13 iccgelb 12542 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
144, 12, 10, 13syl3anc 1439 . . 3 (𝜑𝐴 ≤ (𝑄𝐼))
15 fzofzp1 12884 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
167, 15syl 17 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
176, 16ffvelrnd 6624 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
185, 17sseldi 3819 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19 elicc4 12552 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
2011, 18, 3, 19syl3anc 1439 . . . . 5 (𝜑 → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
212, 20mpbid 224 . . . 4 (𝜑 → ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1))))
2221simpld 490 . . 3 (𝜑 → (𝑄𝐼) ≤ 𝑋)
234, 11, 3, 14, 22xrletrd 12305 . 2 (𝜑𝐴𝑋)
24 iccleub 12541 . . . 4 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1)))
2511, 18, 2, 24syl3anc 1439 . . 3 (𝜑𝑋 ≤ (𝑄‘(𝐼 + 1)))
26 elicc4 12552 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
274, 12, 18, 26syl3anc 1439 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
2817, 27mpbid 224 . . . 4 (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))
2928simprd 491 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
303, 18, 12, 25, 29xrletrd 12305 . 2 (𝜑𝑋𝐵)
31 elicc1 12531 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
324, 12, 31syl2anc 579 . 2 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
333, 23, 30, 32mpbir3and 1399 1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wcel 2107   class class class wbr 4886  wf 6131  cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275  *cxr 10410  cle 10412  [,]cicc 12490  ...cfz 12643  ..^cfzo 12784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-icc 12494  df-fz 12644  df-fzo 12785
This theorem is referenced by:  fourierdlem8  41259  fourierdlem73  41323  fourierdlem81  41331  fourierdlem92  41342  fourierdlem93  41343
  Copyright terms: Public domain W3C validator