Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem1 Structured version   Visualization version   GIF version

Theorem fourierdlem1 45419
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem1.a (𝜑𝐴 ∈ ℝ*)
fourierdlem1.b (𝜑𝐵 ∈ ℝ*)
fourierdlem1.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem1.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem1.x (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
Assertion
Ref Expression
fourierdlem1 (𝜑𝑋 ∈ (𝐴[,]𝐵))

Proof of Theorem fourierdlem1
StepHypRef Expression
1 iccssxr 13431 . . 3 ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ*
2 fourierdlem1.x . . 3 (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
31, 2sselid 3976 . 2 (𝜑𝑋 ∈ ℝ*)
4 fourierdlem1.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 iccssxr 13431 . . . 4 (𝐴[,]𝐵) ⊆ ℝ*
6 fourierdlem1.q . . . . 5 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem1.i . . . . . 6 (𝜑𝐼 ∈ (0..^𝑀))
8 elfzofz 13672 . . . . . 6 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
106, 9ffvelcdmd 7089 . . . 4 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
115, 10sselid 3976 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
12 fourierdlem1.b . . . 4 (𝜑𝐵 ∈ ℝ*)
13 iccgelb 13404 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
144, 12, 10, 13syl3anc 1369 . . 3 (𝜑𝐴 ≤ (𝑄𝐼))
15 fzofzp1 13753 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
167, 15syl 17 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
176, 16ffvelcdmd 7089 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
185, 17sselid 3976 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19 elicc4 13415 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
2011, 18, 3, 19syl3anc 1369 . . . . 5 (𝜑 → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
212, 20mpbid 231 . . . 4 (𝜑 → ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1))))
2221simpld 494 . . 3 (𝜑 → (𝑄𝐼) ≤ 𝑋)
234, 11, 3, 14, 22xrletrd 13165 . 2 (𝜑𝐴𝑋)
24 iccleub 13403 . . . 4 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1)))
2511, 18, 2, 24syl3anc 1369 . . 3 (𝜑𝑋 ≤ (𝑄‘(𝐼 + 1)))
26 elicc4 13415 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
274, 12, 18, 26syl3anc 1369 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
2817, 27mpbid 231 . . . 4 (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))
2928simprd 495 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
303, 18, 12, 25, 29xrletrd 13165 . 2 (𝜑𝑋𝐵)
31 elicc1 13392 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
324, 12, 31syl2anc 583 . 2 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
333, 23, 30, 32mpbir3and 1340 1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2099   class class class wbr 5142  wf 6538  cfv 6542  (class class class)co 7414  0cc0 11130  1c1 11131   + caddc 11133  *cxr 11269  cle 11271  [,]cicc 13351  ...cfz 13508  ..^cfzo 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-icc 13355  df-fz 13509  df-fzo 13652
This theorem is referenced by:  fourierdlem8  45426  fourierdlem73  45490  fourierdlem81  45498  fourierdlem92  45509  fourierdlem93  45510
  Copyright terms: Public domain W3C validator