![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem1 | Structured version Visualization version GIF version |
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
fourierdlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
fourierdlem1.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
fourierdlem1.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
fourierdlem1.x | ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) |
Ref | Expression |
---|---|
fourierdlem1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13490 | . . 3 ⊢ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ* | |
2 | fourierdlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) | |
3 | 1, 2 | sselid 4006 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
4 | fourierdlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | iccssxr 13490 | . . . 4 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
6 | fourierdlem1.q | . . . . 5 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
7 | fourierdlem1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
8 | elfzofz 13732 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
10 | 6, 9 | ffvelcdmd 7119 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
11 | 5, 10 | sselid 4006 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
12 | fourierdlem1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
13 | iccgelb 13463 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
14 | 4, 12, 10, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
15 | fzofzp1 13814 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
16 | 7, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
17 | 6, 16 | ffvelcdmd 7119 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
18 | 5, 17 | sselid 4006 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
19 | elicc4 13474 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) | |
20 | 11, 18, 3, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) |
21 | 2, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1)))) |
22 | 21 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ≤ 𝑋) |
23 | 4, 11, 3, 14, 22 | xrletrd 13224 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝑋) |
24 | iccleub 13462 | . . . 4 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1))) | |
25 | 11, 18, 2, 24 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝑄‘(𝐼 + 1))) |
26 | elicc4 13474 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) | |
27 | 4, 12, 18, 26 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) |
28 | 17, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)) |
29 | 28 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
30 | 3, 18, 12, 25, 29 | xrletrd 13224 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
31 | elicc1 13451 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) | |
32 | 4, 12, 31 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
33 | 3, 23, 30, 32 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 ...cfz 13567 ..^cfzo 13711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-icc 13414 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: fourierdlem8 46036 fourierdlem73 46100 fourierdlem81 46108 fourierdlem92 46119 fourierdlem93 46120 |
Copyright terms: Public domain | W3C validator |