| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem1 | Structured version Visualization version GIF version | ||
| Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| fourierdlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| fourierdlem1.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| fourierdlem1.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| fourierdlem1.x | ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) |
| Ref | Expression |
|---|---|
| fourierdlem1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13367 | . . 3 ⊢ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ* | |
| 2 | fourierdlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) | |
| 3 | 1, 2 | sselid 3941 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 4 | fourierdlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | iccssxr 13367 | . . . 4 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 6 | fourierdlem1.q | . . . . 5 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
| 7 | fourierdlem1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
| 8 | elfzofz 13612 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 10 | 6, 9 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
| 11 | 5, 10 | sselid 3941 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
| 12 | fourierdlem1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 13 | iccgelb 13339 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
| 14 | 4, 12, 10, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
| 15 | fzofzp1 13701 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
| 16 | 7, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 17 | 6, 16 | ffvelcdmd 7039 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
| 18 | 5, 17 | sselid 3941 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
| 19 | elicc4 13350 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) | |
| 20 | 11, 18, 3, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) |
| 21 | 2, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1)))) |
| 22 | 21 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ≤ 𝑋) |
| 23 | 4, 11, 3, 14, 22 | xrletrd 13098 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝑋) |
| 24 | iccleub 13338 | . . . 4 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1))) | |
| 25 | 11, 18, 2, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝑄‘(𝐼 + 1))) |
| 26 | elicc4 13350 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) | |
| 27 | 4, 12, 18, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) |
| 28 | 17, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)) |
| 29 | 28 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
| 30 | 3, 18, 12, 25, 29 | xrletrd 13098 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
| 31 | elicc1 13326 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) | |
| 32 | 4, 12, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
| 33 | 3, 23, 30, 32 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 ℝ*cxr 11183 ≤ cle 11185 [,]cicc 13285 ...cfz 13444 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-icc 13289 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: fourierdlem8 46086 fourierdlem73 46150 fourierdlem81 46158 fourierdlem92 46169 fourierdlem93 46170 |
| Copyright terms: Public domain | W3C validator |