Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem1 Structured version   Visualization version   GIF version

Theorem fourierdlem1 46137
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem1.a (𝜑𝐴 ∈ ℝ*)
fourierdlem1.b (𝜑𝐵 ∈ ℝ*)
fourierdlem1.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem1.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem1.x (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
Assertion
Ref Expression
fourierdlem1 (𝜑𝑋 ∈ (𝐴[,]𝐵))

Proof of Theorem fourierdlem1
StepHypRef Expression
1 iccssxr 13447 . . 3 ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ*
2 fourierdlem1.x . . 3 (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
31, 2sselid 3956 . 2 (𝜑𝑋 ∈ ℝ*)
4 fourierdlem1.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 iccssxr 13447 . . . 4 (𝐴[,]𝐵) ⊆ ℝ*
6 fourierdlem1.q . . . . 5 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem1.i . . . . . 6 (𝜑𝐼 ∈ (0..^𝑀))
8 elfzofz 13692 . . . . . 6 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
106, 9ffvelcdmd 7075 . . . 4 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
115, 10sselid 3956 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
12 fourierdlem1.b . . . 4 (𝜑𝐵 ∈ ℝ*)
13 iccgelb 13419 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
144, 12, 10, 13syl3anc 1373 . . 3 (𝜑𝐴 ≤ (𝑄𝐼))
15 fzofzp1 13780 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
167, 15syl 17 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
176, 16ffvelcdmd 7075 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
185, 17sselid 3956 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19 elicc4 13430 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
2011, 18, 3, 19syl3anc 1373 . . . . 5 (𝜑 → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
212, 20mpbid 232 . . . 4 (𝜑 → ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1))))
2221simpld 494 . . 3 (𝜑 → (𝑄𝐼) ≤ 𝑋)
234, 11, 3, 14, 22xrletrd 13178 . 2 (𝜑𝐴𝑋)
24 iccleub 13418 . . . 4 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1)))
2511, 18, 2, 24syl3anc 1373 . . 3 (𝜑𝑋 ≤ (𝑄‘(𝐼 + 1)))
26 elicc4 13430 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
274, 12, 18, 26syl3anc 1373 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
2817, 27mpbid 232 . . . 4 (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))
2928simprd 495 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
303, 18, 12, 25, 29xrletrd 13178 . 2 (𝜑𝑋𝐵)
31 elicc1 13406 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
324, 12, 31syl2anc 584 . 2 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
333, 23, 30, 32mpbir3and 1343 1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268  cle 11270  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-icc 13369  df-fz 13525  df-fzo 13672
This theorem is referenced by:  fourierdlem8  46144  fourierdlem73  46208  fourierdlem81  46216  fourierdlem92  46227  fourierdlem93  46228
  Copyright terms: Public domain W3C validator