Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem1 Structured version   Visualization version   GIF version

Theorem fourierdlem1 42413
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem1.a (𝜑𝐴 ∈ ℝ*)
fourierdlem1.b (𝜑𝐵 ∈ ℝ*)
fourierdlem1.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem1.i (𝜑𝐼 ∈ (0..^𝑀))
fourierdlem1.x (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
Assertion
Ref Expression
fourierdlem1 (𝜑𝑋 ∈ (𝐴[,]𝐵))

Proof of Theorem fourierdlem1
StepHypRef Expression
1 iccssxr 12820 . . 3 ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ*
2 fourierdlem1.x . . 3 (𝜑𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))))
31, 2sseldi 3965 . 2 (𝜑𝑋 ∈ ℝ*)
4 fourierdlem1.a . . 3 (𝜑𝐴 ∈ ℝ*)
5 iccssxr 12820 . . . 4 (𝐴[,]𝐵) ⊆ ℝ*
6 fourierdlem1.q . . . . 5 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
7 fourierdlem1.i . . . . . 6 (𝜑𝐼 ∈ (0..^𝑀))
8 elfzofz 13054 . . . . . 6 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
97, 8syl 17 . . . . 5 (𝜑𝐼 ∈ (0...𝑀))
106, 9ffvelrnd 6852 . . . 4 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
115, 10sseldi 3965 . . 3 (𝜑 → (𝑄𝐼) ∈ ℝ*)
12 fourierdlem1.b . . . 4 (𝜑𝐵 ∈ ℝ*)
13 iccgelb 12794 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
144, 12, 10, 13syl3anc 1367 . . 3 (𝜑𝐴 ≤ (𝑄𝐼))
15 fzofzp1 13135 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
167, 15syl 17 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
176, 16ffvelrnd 6852 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
185, 17sseldi 3965 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
19 elicc4 12804 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
2011, 18, 3, 19syl3anc 1367 . . . . 5 (𝜑 → (𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1)))))
212, 20mpbid 234 . . . 4 (𝜑 → ((𝑄𝐼) ≤ 𝑋𝑋 ≤ (𝑄‘(𝐼 + 1))))
2221simpld 497 . . 3 (𝜑 → (𝑄𝐼) ≤ 𝑋)
234, 11, 3, 14, 22xrletrd 12556 . 2 (𝜑𝐴𝑋)
24 iccleub 12793 . . . 4 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑋 ∈ ((𝑄𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1)))
2511, 18, 2, 24syl3anc 1367 . . 3 (𝜑𝑋 ≤ (𝑄‘(𝐼 + 1)))
26 elicc4 12804 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
274, 12, 18, 26syl3anc 1367 . . . . 5 (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)))
2817, 27mpbid 234 . . . 4 (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))
2928simprd 498 . . 3 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
303, 18, 12, 25, 29xrletrd 12556 . 2 (𝜑𝑋𝐵)
31 elicc1 12783 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
324, 12, 31syl2anc 586 . 2 (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ*𝐴𝑋𝑋𝐵)))
333, 23, 30, 32mpbir3and 1338 1 (𝜑𝑋 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  *cxr 10674  cle 10676  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-icc 12746  df-fz 12894  df-fzo 13035
This theorem is referenced by:  fourierdlem8  42420  fourierdlem73  42484  fourierdlem81  42492  fourierdlem92  42503  fourierdlem93  42504
  Copyright terms: Public domain W3C validator