| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem1 | Structured version Visualization version GIF version | ||
| Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| fourierdlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| fourierdlem1.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| fourierdlem1.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| fourierdlem1.x | ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) |
| Ref | Expression |
|---|---|
| fourierdlem1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13325 | . . 3 ⊢ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ* | |
| 2 | fourierdlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) | |
| 3 | 1, 2 | sselid 3927 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
| 4 | fourierdlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 5 | iccssxr 13325 | . . . 4 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 6 | fourierdlem1.q | . . . . 5 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
| 7 | fourierdlem1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
| 8 | elfzofz 13570 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 10 | 6, 9 | ffvelcdmd 7013 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
| 11 | 5, 10 | sselid 3927 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
| 12 | fourierdlem1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 13 | iccgelb 13297 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
| 14 | 4, 12, 10, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
| 15 | fzofzp1 13659 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
| 16 | 7, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 17 | 6, 16 | ffvelcdmd 7013 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
| 18 | 5, 17 | sselid 3927 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
| 19 | elicc4 13308 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) | |
| 20 | 11, 18, 3, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) |
| 21 | 2, 20 | mpbid 232 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1)))) |
| 22 | 21 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ≤ 𝑋) |
| 23 | 4, 11, 3, 14, 22 | xrletrd 13056 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝑋) |
| 24 | iccleub 13296 | . . . 4 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1))) | |
| 25 | 11, 18, 2, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝑄‘(𝐼 + 1))) |
| 26 | elicc4 13308 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) | |
| 27 | 4, 12, 18, 26 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) |
| 28 | 17, 27 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)) |
| 29 | 28 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
| 30 | 3, 18, 12, 25, 29 | xrletrd 13056 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
| 31 | elicc1 13284 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) | |
| 32 | 4, 12, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
| 33 | 3, 23, 30, 32 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5086 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 ℝ*cxr 11140 ≤ cle 11142 [,]cicc 13243 ...cfz 13402 ..^cfzo 13549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-icc 13247 df-fz 13403 df-fzo 13550 |
| This theorem is referenced by: fourierdlem8 46153 fourierdlem73 46217 fourierdlem81 46225 fourierdlem92 46236 fourierdlem93 46237 |
| Copyright terms: Public domain | W3C validator |