![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem1 | Structured version Visualization version GIF version |
Description: A partition interval is a subset of the partitioned interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
fourierdlem1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
fourierdlem1.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
fourierdlem1.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
fourierdlem1.x | ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) |
Ref | Expression |
---|---|
fourierdlem1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13403 | . . 3 ⊢ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ⊆ ℝ* | |
2 | fourierdlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) | |
3 | 1, 2 | sselid 3979 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℝ*) |
4 | fourierdlem1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
5 | iccssxr 13403 | . . . 4 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
6 | fourierdlem1.q | . . . . 5 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
7 | fourierdlem1.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
8 | elfzofz 13644 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
10 | 6, 9 | ffvelcdmd 7084 | . . . 4 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
11 | 5, 10 | sselid 3979 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
12 | fourierdlem1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
13 | iccgelb 13376 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
14 | 4, 12, 10, 13 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
15 | fzofzp1 13725 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
16 | 7, 15 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
17 | 6, 16 | ffvelcdmd 7084 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
18 | 5, 17 | sselid 3979 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
19 | elicc4 13387 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*) → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) | |
20 | 11, 18, 3, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1))) ↔ ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1))))) |
21 | 2, 20 | mpbid 231 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝐼) ≤ 𝑋 ∧ 𝑋 ≤ (𝑄‘(𝐼 + 1)))) |
22 | 21 | simpld 495 | . . 3 ⊢ (𝜑 → (𝑄‘𝐼) ≤ 𝑋) |
23 | 4, 11, 3, 14, 22 | xrletrd 13137 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝑋) |
24 | iccleub 13375 | . . . 4 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ((𝑄‘𝐼)[,](𝑄‘(𝐼 + 1)))) → 𝑋 ≤ (𝑄‘(𝐼 + 1))) | |
25 | 11, 18, 2, 24 | syl3anc 1371 | . . 3 ⊢ (𝜑 → 𝑋 ≤ (𝑄‘(𝐼 + 1))) |
26 | elicc4 13387 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) | |
27 | 4, 12, 18, 26 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵))) |
28 | 17, 27 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ≤ (𝑄‘(𝐼 + 1)) ∧ (𝑄‘(𝐼 + 1)) ≤ 𝐵)) |
29 | 28 | simprd 496 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
30 | 3, 18, 12, 25, 29 | xrletrd 13137 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝐵) |
31 | elicc1 13364 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) | |
32 | 4, 12, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ* ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
33 | 3, 23, 30, 32 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5147 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 + caddc 11109 ℝ*cxr 11243 ≤ cle 11245 [,]cicc 13323 ...cfz 13480 ..^cfzo 13623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-icc 13327 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: fourierdlem8 44817 fourierdlem73 44881 fourierdlem81 44889 fourierdlem92 44900 fourierdlem93 44901 |
Copyright terms: Public domain | W3C validator |