Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos2h Structured version   Visualization version   GIF version

Theorem cos2h 35777
Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
cos2h (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Proof of Theorem cos2h
StepHypRef Expression
1 pire 25624 . . . . . . 7 π ∈ ℝ
21renegcli 11291 . . . . . 6 -π ∈ ℝ
3 iccssre 13170 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42, 1, 3mp2an 689 . . . . 5 (-π[,]π) ⊆ ℝ
54sseli 3918 . . . 4 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
65rehalfcld 12229 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℝ)
76recoscld 15862 . 2 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) ∈ ℝ)
8 1re 10984 . . . . 5 1 ∈ ℝ
95recoscld 15862 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘𝐴) ∈ ℝ)
10 readdcl 10963 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
118, 9, 10sylancr 587 . . . 4 (𝐴 ∈ (-π[,]π) → (1 + (cos‘𝐴)) ∈ ℝ)
1211rehalfcld 12229 . . 3 (𝐴 ∈ (-π[,]π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ)
13 cosbnd 15899 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1413simpld 495 . . . . 5 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
15 recoscl 15859 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
16 recn 10970 . . . . . . . . 9 ((cos‘𝐴) ∈ ℝ → (cos‘𝐴) ∈ ℂ)
17 recn 10970 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℂ)
18 subneg 11279 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
19 addcom 11170 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2019ancoms 459 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2118, 20eqtr4d 2782 . . . . . . . . 9 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2216, 17, 21syl2an 596 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2322breq2d 5087 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
24 renegcl 11293 . . . . . . . 8 (1 ∈ ℝ → -1 ∈ ℝ)
25 subge0 11497 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2624, 25sylan2 593 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2710ancoms 459 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
28 halfnneg2 12213 . . . . . . . 8 ((1 + (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
2927, 28syl 17 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3023, 26, 293bitr3d 309 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3115, 8, 30sylancl 586 . . . . 5 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3214, 31mpbid 231 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 + (cos‘𝐴)) / 2))
335, 32syl 17 . . 3 (𝐴 ∈ (-π[,]π) → 0 ≤ ((1 + (cos‘𝐴)) / 2))
3412, 33resqrtcld 15138 . 2 (𝐴 ∈ (-π[,]π) → (√‘((1 + (cos‘𝐴)) / 2)) ∈ ℝ)
352, 1elicc2i 13154 . . . 4 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
36 2re 12056 . . . . . . . . . . 11 2 ∈ ℝ
37 2pos 12085 . . . . . . . . . . 11 0 < 2
3836, 37pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
39 lediv1 11849 . . . . . . . . . 10 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
402, 38, 39mp3an13 1451 . . . . . . . . 9 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
41 picn 25625 . . . . . . . . . . 11 π ∈ ℂ
42 2cn 12057 . . . . . . . . . . 11 2 ∈ ℂ
43 2ne0 12086 . . . . . . . . . . 11 2 ≠ 0
44 divneg 11676 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4541, 42, 43, 44mp3an 1460 . . . . . . . . . 10 -(π / 2) = (-π / 2)
4645breq1i 5082 . . . . . . . . 9 (-(π / 2) ≤ (𝐴 / 2) ↔ (-π / 2) ≤ (𝐴 / 2))
4740, 46bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ -(π / 2) ≤ (𝐴 / 2)))
48 lediv1 11849 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
491, 38, 48mp3an23 1452 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
5047, 49anbi12d 631 . . . . . . 7 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
51 rehalfcl 12208 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
5251rexrd 11034 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
53 halfpire 25630 . . . . . . . . . . 11 (π / 2) ∈ ℝ
5453renegcli 11291 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5554rexri 11042 . . . . . . . . 9 -(π / 2) ∈ ℝ*
5653rexri 11042 . . . . . . . . 9 (π / 2) ∈ ℝ*
57 elicc4 13155 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5855, 56, 57mp3an12 1450 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
6050, 59bitr4d 281 . . . . . 6 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
6160biimpd 228 . . . . 5 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
62613impib 1115 . . . 4 ((𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
6335, 62sylbi 216 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
64 cosq14ge0 25677 . . 3 ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
6563, 64syl 17 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (cos‘(𝐴 / 2)))
6612, 33sqrtge0d 15141 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (√‘((1 + (cos‘𝐴)) / 2)))
675recnd 11012 . . 3 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
68 ax-1cn 10938 . . . . . . 7 1 ∈ ℂ
69 coscl 15845 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
70 addcl 10962 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
7168, 69, 70sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) ∈ ℂ)
7271halfcld 12227 . . . . 5 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) ∈ ℂ)
7372sqsqrtd 15160 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 + (cos‘𝐴)) / 2))↑2) = ((1 + (cos‘𝐴)) / 2))
74 divcan2 11650 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7542, 43, 74mp3an23 1452 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7675fveq2d 6787 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
77 halfcl 12207 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
78 cos2t 15896 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
7977, 78syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8076, 79eqtr3d 2781 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8180oveq2d 7300 . . . . 5 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) = (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8281oveq1d 7299 . . . 4 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) = ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2))
8377coscld 15849 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
8483sqcld 13871 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
85 mulcl 10964 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
8642, 85mpan 687 . . . . . . . 8 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
87 pncan3 11238 . . . . . . . 8 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ) → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8868, 86, 87sylancr 587 . . . . . . 7 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8988oveq1d 7299 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((2 · ((cos‘(𝐴 / 2))↑2)) / 2))
90 divcan3 11668 . . . . . . 7 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9142, 43, 90mp3an23 1452 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9289, 91eqtrd 2779 . . . . 5 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9384, 92syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9473, 82, 933eqtrrd 2784 . . 3 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
9567, 94syl 17 . 2 (𝐴 ∈ (-π[,]π) → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
967, 34, 65, 66, 95sq11d 13984 1 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wss 3888   class class class wbr 5075  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  *cxr 11017   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  2c2 12037  [,]cicc 13091  cexp 13791  csqrt 14953  cosccos 15783  πcpi 15785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-2o 8307  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-fi 9179  df-sup 9210  df-inf 9211  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-q 12698  df-rp 12740  df-xneg 12857  df-xadd 12858  df-xmul 12859  df-ioo 13092  df-ioc 13093  df-ico 13094  df-icc 13095  df-fz 13249  df-fzo 13392  df-fl 13521  df-seq 13731  df-exp 13792  df-fac 13997  df-bc 14026  df-hash 14054  df-shft 14787  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-limsup 15189  df-clim 15206  df-rlim 15207  df-sum 15407  df-ef 15786  df-sin 15788  df-cos 15789  df-pi 15791  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-rest 17142  df-topn 17143  df-0g 17161  df-gsum 17162  df-topgen 17163  df-pt 17164  df-prds 17167  df-xrs 17222  df-qtop 17227  df-imas 17228  df-xps 17230  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397  df-psmet 20598  df-xmet 20599  df-met 20600  df-bl 20601  df-mopn 20602  df-fbas 20603  df-fg 20604  df-cnfld 20607  df-top 22052  df-topon 22069  df-topsp 22091  df-bases 22105  df-cld 22179  df-ntr 22180  df-cls 22181  df-nei 22258  df-lp 22296  df-perf 22297  df-cn 22387  df-cnp 22388  df-haus 22475  df-tx 22722  df-hmeo 22915  df-fil 23006  df-fm 23098  df-flim 23099  df-flf 23100  df-xms 23482  df-ms 23483  df-tms 23484  df-cncf 24050  df-limc 25039  df-dv 25040
This theorem is referenced by:  tan2h  35778
  Copyright terms: Public domain W3C validator