Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos2h Structured version   Visualization version   GIF version

Theorem cos2h 37571
Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
cos2h (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Proof of Theorem cos2h
StepHypRef Expression
1 pire 26518 . . . . . . 7 π ∈ ℝ
21renegcli 11597 . . . . . 6 -π ∈ ℝ
3 iccssre 13489 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42, 1, 3mp2an 691 . . . . 5 (-π[,]π) ⊆ ℝ
54sseli 4004 . . . 4 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
65rehalfcld 12540 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℝ)
76recoscld 16192 . 2 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) ∈ ℝ)
8 1re 11290 . . . . 5 1 ∈ ℝ
95recoscld 16192 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘𝐴) ∈ ℝ)
10 readdcl 11267 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
118, 9, 10sylancr 586 . . . 4 (𝐴 ∈ (-π[,]π) → (1 + (cos‘𝐴)) ∈ ℝ)
1211rehalfcld 12540 . . 3 (𝐴 ∈ (-π[,]π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ)
13 cosbnd 16229 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1413simpld 494 . . . . 5 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
15 recoscl 16189 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
16 recn 11274 . . . . . . . . 9 ((cos‘𝐴) ∈ ℝ → (cos‘𝐴) ∈ ℂ)
17 recn 11274 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℂ)
18 subneg 11585 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
19 addcom 11476 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2019ancoms 458 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2118, 20eqtr4d 2783 . . . . . . . . 9 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2216, 17, 21syl2an 595 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2322breq2d 5178 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
24 renegcl 11599 . . . . . . . 8 (1 ∈ ℝ → -1 ∈ ℝ)
25 subge0 11803 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2624, 25sylan2 592 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2710ancoms 458 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
28 halfnneg2 12524 . . . . . . . 8 ((1 + (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
2927, 28syl 17 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3023, 26, 293bitr3d 309 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3115, 8, 30sylancl 585 . . . . 5 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3214, 31mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 + (cos‘𝐴)) / 2))
335, 32syl 17 . . 3 (𝐴 ∈ (-π[,]π) → 0 ≤ ((1 + (cos‘𝐴)) / 2))
3412, 33resqrtcld 15466 . 2 (𝐴 ∈ (-π[,]π) → (√‘((1 + (cos‘𝐴)) / 2)) ∈ ℝ)
352, 1elicc2i 13473 . . . 4 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
36 2re 12367 . . . . . . . . . . 11 2 ∈ ℝ
37 2pos 12396 . . . . . . . . . . 11 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
39 lediv1 12160 . . . . . . . . . 10 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
402, 38, 39mp3an13 1452 . . . . . . . . 9 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
41 picn 26519 . . . . . . . . . . 11 π ∈ ℂ
42 2cn 12368 . . . . . . . . . . 11 2 ∈ ℂ
43 2ne0 12397 . . . . . . . . . . 11 2 ≠ 0
44 divneg 11986 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4541, 42, 43, 44mp3an 1461 . . . . . . . . . 10 -(π / 2) = (-π / 2)
4645breq1i 5173 . . . . . . . . 9 (-(π / 2) ≤ (𝐴 / 2) ↔ (-π / 2) ≤ (𝐴 / 2))
4740, 46bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ -(π / 2) ≤ (𝐴 / 2)))
48 lediv1 12160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
491, 38, 48mp3an23 1453 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
5047, 49anbi12d 631 . . . . . . 7 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
51 rehalfcl 12519 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
5251rexrd 11340 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
53 halfpire 26524 . . . . . . . . . . 11 (π / 2) ∈ ℝ
5453renegcli 11597 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5554rexri 11348 . . . . . . . . 9 -(π / 2) ∈ ℝ*
5653rexri 11348 . . . . . . . . 9 (π / 2) ∈ ℝ*
57 elicc4 13474 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5855, 56, 57mp3an12 1451 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
6050, 59bitr4d 282 . . . . . 6 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
6160biimpd 229 . . . . 5 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
62613impib 1116 . . . 4 ((𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
6335, 62sylbi 217 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
64 cosq14ge0 26571 . . 3 ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
6563, 64syl 17 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (cos‘(𝐴 / 2)))
6612, 33sqrtge0d 15469 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (√‘((1 + (cos‘𝐴)) / 2)))
675recnd 11318 . . 3 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
68 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
69 coscl 16175 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
70 addcl 11266 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
7168, 69, 70sylancr 586 . . . . . 6 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) ∈ ℂ)
7271halfcld 12538 . . . . 5 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) ∈ ℂ)
7372sqsqrtd 15488 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 + (cos‘𝐴)) / 2))↑2) = ((1 + (cos‘𝐴)) / 2))
74 divcan2 11957 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7542, 43, 74mp3an23 1453 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7675fveq2d 6924 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
77 halfcl 12518 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
78 cos2t 16226 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
7977, 78syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8076, 79eqtr3d 2782 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8180oveq2d 7464 . . . . 5 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) = (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8281oveq1d 7463 . . . 4 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) = ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2))
8377coscld 16179 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
8483sqcld 14194 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
85 mulcl 11268 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
8642, 85mpan 689 . . . . . . . 8 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
87 pncan3 11544 . . . . . . . 8 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ) → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8868, 86, 87sylancr 586 . . . . . . 7 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8988oveq1d 7463 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((2 · ((cos‘(𝐴 / 2))↑2)) / 2))
90 divcan3 11975 . . . . . . 7 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9142, 43, 90mp3an23 1453 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9289, 91eqtrd 2780 . . . . 5 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9384, 92syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9473, 82, 933eqtrrd 2785 . . 3 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
9567, 94syl 17 . 2 (𝐴 ∈ (-π[,]π) → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
967, 34, 65, 66, 95sq11d 14307 1 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  [,]cicc 13410  cexp 14112  csqrt 15282  cosccos 16112  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  tan2h  37572
  Copyright terms: Public domain W3C validator