Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos2h Structured version   Visualization version   GIF version

Theorem cos2h 37605
Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
cos2h (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Proof of Theorem cos2h
StepHypRef Expression
1 pire 26366 . . . . . . 7 π ∈ ℝ
21renegcli 11483 . . . . . 6 -π ∈ ℝ
3 iccssre 13390 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42, 1, 3mp2an 692 . . . . 5 (-π[,]π) ⊆ ℝ
54sseli 3942 . . . 4 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
65rehalfcld 12429 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℝ)
76recoscld 16112 . 2 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) ∈ ℝ)
8 1re 11174 . . . . 5 1 ∈ ℝ
95recoscld 16112 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘𝐴) ∈ ℝ)
10 readdcl 11151 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
118, 9, 10sylancr 587 . . . 4 (𝐴 ∈ (-π[,]π) → (1 + (cos‘𝐴)) ∈ ℝ)
1211rehalfcld 12429 . . 3 (𝐴 ∈ (-π[,]π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ)
13 cosbnd 16149 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1413simpld 494 . . . . 5 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
15 recoscl 16109 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
16 recn 11158 . . . . . . . . 9 ((cos‘𝐴) ∈ ℝ → (cos‘𝐴) ∈ ℂ)
17 recn 11158 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℂ)
18 subneg 11471 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
19 addcom 11360 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2019ancoms 458 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2118, 20eqtr4d 2767 . . . . . . . . 9 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2216, 17, 21syl2an 596 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2322breq2d 5119 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
24 renegcl 11485 . . . . . . . 8 (1 ∈ ℝ → -1 ∈ ℝ)
25 subge0 11691 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2624, 25sylan2 593 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2710ancoms 458 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
28 halfnneg2 12413 . . . . . . . 8 ((1 + (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
2927, 28syl 17 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3023, 26, 293bitr3d 309 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3115, 8, 30sylancl 586 . . . . 5 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3214, 31mpbid 232 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 + (cos‘𝐴)) / 2))
335, 32syl 17 . . 3 (𝐴 ∈ (-π[,]π) → 0 ≤ ((1 + (cos‘𝐴)) / 2))
3412, 33resqrtcld 15384 . 2 (𝐴 ∈ (-π[,]π) → (√‘((1 + (cos‘𝐴)) / 2)) ∈ ℝ)
352, 1elicc2i 13373 . . . 4 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
36 2re 12260 . . . . . . . . . . 11 2 ∈ ℝ
37 2pos 12289 . . . . . . . . . . 11 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
39 lediv1 12048 . . . . . . . . . 10 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
402, 38, 39mp3an13 1454 . . . . . . . . 9 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
41 picn 26367 . . . . . . . . . . 11 π ∈ ℂ
42 2cn 12261 . . . . . . . . . . 11 2 ∈ ℂ
43 2ne0 12290 . . . . . . . . . . 11 2 ≠ 0
44 divneg 11874 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4541, 42, 43, 44mp3an 1463 . . . . . . . . . 10 -(π / 2) = (-π / 2)
4645breq1i 5114 . . . . . . . . 9 (-(π / 2) ≤ (𝐴 / 2) ↔ (-π / 2) ≤ (𝐴 / 2))
4740, 46bitr4di 289 . . . . . . . 8 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ -(π / 2) ≤ (𝐴 / 2)))
48 lediv1 12048 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
491, 38, 48mp3an23 1455 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
5047, 49anbi12d 632 . . . . . . 7 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
51 rehalfcl 12409 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
5251rexrd 11224 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
53 halfpire 26373 . . . . . . . . . . 11 (π / 2) ∈ ℝ
5453renegcli 11483 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5554rexri 11232 . . . . . . . . 9 -(π / 2) ∈ ℝ*
5653rexri 11232 . . . . . . . . 9 (π / 2) ∈ ℝ*
57 elicc4 13374 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5855, 56, 57mp3an12 1453 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
6050, 59bitr4d 282 . . . . . 6 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
6160biimpd 229 . . . . 5 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
62613impib 1116 . . . 4 ((𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
6335, 62sylbi 217 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
64 cosq14ge0 26420 . . 3 ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
6563, 64syl 17 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (cos‘(𝐴 / 2)))
6612, 33sqrtge0d 15387 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (√‘((1 + (cos‘𝐴)) / 2)))
675recnd 11202 . . 3 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
68 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
69 coscl 16095 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
70 addcl 11150 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
7168, 69, 70sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) ∈ ℂ)
7271halfcld 12427 . . . . 5 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) ∈ ℂ)
7372sqsqrtd 15408 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 + (cos‘𝐴)) / 2))↑2) = ((1 + (cos‘𝐴)) / 2))
74 divcan2 11845 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7542, 43, 74mp3an23 1455 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7675fveq2d 6862 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
77 halfcl 12408 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
78 cos2t 16146 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
7977, 78syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8076, 79eqtr3d 2766 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8180oveq2d 7403 . . . . 5 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) = (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8281oveq1d 7402 . . . 4 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) = ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2))
8377coscld 16099 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
8483sqcld 14109 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
85 mulcl 11152 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
8642, 85mpan 690 . . . . . . . 8 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
87 pncan3 11429 . . . . . . . 8 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ) → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8868, 86, 87sylancr 587 . . . . . . 7 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8988oveq1d 7402 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((2 · ((cos‘(𝐴 / 2))↑2)) / 2))
90 divcan3 11863 . . . . . . 7 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9142, 43, 90mp3an23 1455 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9289, 91eqtrd 2764 . . . . 5 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9384, 92syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9473, 82, 933eqtrrd 2769 . . 3 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
9567, 94syl 17 . 2 (𝐴 ∈ (-π[,]π) → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
967, 34, 65, 66, 95sq11d 14223 1 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  [,]cicc 13309  cexp 14026  csqrt 15199  cosccos 16030  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  tan2h  37606
  Copyright terms: Public domain W3C validator