Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos2h Structured version   Visualization version   GIF version

Theorem cos2h 35873
Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
cos2h (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Proof of Theorem cos2h
StepHypRef Expression
1 pire 25721 . . . . . . 7 π ∈ ℝ
21renegcli 11383 . . . . . 6 -π ∈ ℝ
3 iccssre 13262 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42, 1, 3mp2an 689 . . . . 5 (-π[,]π) ⊆ ℝ
54sseli 3928 . . . 4 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
65rehalfcld 12321 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℝ)
76recoscld 15952 . 2 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) ∈ ℝ)
8 1re 11076 . . . . 5 1 ∈ ℝ
95recoscld 15952 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘𝐴) ∈ ℝ)
10 readdcl 11055 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
118, 9, 10sylancr 587 . . . 4 (𝐴 ∈ (-π[,]π) → (1 + (cos‘𝐴)) ∈ ℝ)
1211rehalfcld 12321 . . 3 (𝐴 ∈ (-π[,]π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ)
13 cosbnd 15989 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1413simpld 495 . . . . 5 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
15 recoscl 15949 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
16 recn 11062 . . . . . . . . 9 ((cos‘𝐴) ∈ ℝ → (cos‘𝐴) ∈ ℂ)
17 recn 11062 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℂ)
18 subneg 11371 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
19 addcom 11262 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2019ancoms 459 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2118, 20eqtr4d 2779 . . . . . . . . 9 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2216, 17, 21syl2an 596 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2322breq2d 5104 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
24 renegcl 11385 . . . . . . . 8 (1 ∈ ℝ → -1 ∈ ℝ)
25 subge0 11589 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2624, 25sylan2 593 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2710ancoms 459 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
28 halfnneg2 12305 . . . . . . . 8 ((1 + (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
2927, 28syl 17 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3023, 26, 293bitr3d 308 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3115, 8, 30sylancl 586 . . . . 5 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3214, 31mpbid 231 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 + (cos‘𝐴)) / 2))
335, 32syl 17 . . 3 (𝐴 ∈ (-π[,]π) → 0 ≤ ((1 + (cos‘𝐴)) / 2))
3412, 33resqrtcld 15228 . 2 (𝐴 ∈ (-π[,]π) → (√‘((1 + (cos‘𝐴)) / 2)) ∈ ℝ)
352, 1elicc2i 13246 . . . 4 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
36 2re 12148 . . . . . . . . . . 11 2 ∈ ℝ
37 2pos 12177 . . . . . . . . . . 11 0 < 2
3836, 37pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
39 lediv1 11941 . . . . . . . . . 10 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
402, 38, 39mp3an13 1451 . . . . . . . . 9 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
41 picn 25722 . . . . . . . . . . 11 π ∈ ℂ
42 2cn 12149 . . . . . . . . . . 11 2 ∈ ℂ
43 2ne0 12178 . . . . . . . . . . 11 2 ≠ 0
44 divneg 11768 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4541, 42, 43, 44mp3an 1460 . . . . . . . . . 10 -(π / 2) = (-π / 2)
4645breq1i 5099 . . . . . . . . 9 (-(π / 2) ≤ (𝐴 / 2) ↔ (-π / 2) ≤ (𝐴 / 2))
4740, 46bitr4di 288 . . . . . . . 8 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ -(π / 2) ≤ (𝐴 / 2)))
48 lediv1 11941 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
491, 38, 48mp3an23 1452 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
5047, 49anbi12d 631 . . . . . . 7 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
51 rehalfcl 12300 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
5251rexrd 11126 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
53 halfpire 25727 . . . . . . . . . . 11 (π / 2) ∈ ℝ
5453renegcli 11383 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5554rexri 11134 . . . . . . . . 9 -(π / 2) ∈ ℝ*
5653rexri 11134 . . . . . . . . 9 (π / 2) ∈ ℝ*
57 elicc4 13247 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5855, 56, 57mp3an12 1450 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
6050, 59bitr4d 281 . . . . . 6 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
6160biimpd 228 . . . . 5 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
62613impib 1115 . . . 4 ((𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
6335, 62sylbi 216 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
64 cosq14ge0 25774 . . 3 ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
6563, 64syl 17 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (cos‘(𝐴 / 2)))
6612, 33sqrtge0d 15231 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (√‘((1 + (cos‘𝐴)) / 2)))
675recnd 11104 . . 3 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
68 ax-1cn 11030 . . . . . . 7 1 ∈ ℂ
69 coscl 15935 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
70 addcl 11054 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
7168, 69, 70sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) ∈ ℂ)
7271halfcld 12319 . . . . 5 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) ∈ ℂ)
7372sqsqrtd 15250 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 + (cos‘𝐴)) / 2))↑2) = ((1 + (cos‘𝐴)) / 2))
74 divcan2 11742 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7542, 43, 74mp3an23 1452 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7675fveq2d 6829 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
77 halfcl 12299 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
78 cos2t 15986 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
7977, 78syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8076, 79eqtr3d 2778 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8180oveq2d 7353 . . . . 5 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) = (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8281oveq1d 7352 . . . 4 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) = ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2))
8377coscld 15939 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
8483sqcld 13963 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
85 mulcl 11056 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
8642, 85mpan 687 . . . . . . . 8 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
87 pncan3 11330 . . . . . . . 8 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ) → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8868, 86, 87sylancr 587 . . . . . . 7 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8988oveq1d 7352 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((2 · ((cos‘(𝐴 / 2))↑2)) / 2))
90 divcan3 11760 . . . . . . 7 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9142, 43, 90mp3an23 1452 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9289, 91eqtrd 2776 . . . . 5 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9384, 92syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9473, 82, 933eqtrrd 2781 . . 3 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
9567, 94syl 17 . 2 (𝐴 ∈ (-π[,]π) → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
967, 34, 65, 66, 95sq11d 14076 1 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wss 3898   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975   · cmul 10977  *cxr 11109   < clt 11110  cle 11111  cmin 11306  -cneg 11307   / cdiv 11733  2c2 12129  [,]cicc 13183  cexp 13883  csqrt 15043  cosccos 15873  πcpi 15875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137
This theorem is referenced by:  tan2h  35874
  Copyright terms: Public domain W3C validator