Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos2h Structured version   Visualization version   GIF version

Theorem cos2h 35047
Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018.)
Assertion
Ref Expression
cos2h (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))

Proof of Theorem cos2h
StepHypRef Expression
1 pire 25055 . . . . . . 7 π ∈ ℝ
21renegcli 10940 . . . . . 6 -π ∈ ℝ
3 iccssre 12811 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42, 1, 3mp2an 691 . . . . 5 (-π[,]π) ⊆ ℝ
54sseli 3914 . . . 4 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℝ)
65rehalfcld 11876 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ ℝ)
76recoscld 15493 . 2 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) ∈ ℝ)
8 1re 10634 . . . . 5 1 ∈ ℝ
95recoscld 15493 . . . . 5 (𝐴 ∈ (-π[,]π) → (cos‘𝐴) ∈ ℝ)
10 readdcl 10613 . . . . 5 ((1 ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
118, 9, 10sylancr 590 . . . 4 (𝐴 ∈ (-π[,]π) → (1 + (cos‘𝐴)) ∈ ℝ)
1211rehalfcld 11876 . . 3 (𝐴 ∈ (-π[,]π) → ((1 + (cos‘𝐴)) / 2) ∈ ℝ)
13 cosbnd 15530 . . . . . 6 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
1413simpld 498 . . . . 5 (𝐴 ∈ ℝ → -1 ≤ (cos‘𝐴))
15 recoscl 15490 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
16 recn 10620 . . . . . . . . 9 ((cos‘𝐴) ∈ ℝ → (cos‘𝐴) ∈ ℂ)
17 recn 10620 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℂ)
18 subneg 10928 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = ((cos‘𝐴) + 1))
19 addcom 10819 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2019ancoms 462 . . . . . . . . . 10 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (cos‘𝐴)) = ((cos‘𝐴) + 1))
2118, 20eqtr4d 2839 . . . . . . . . 9 (((cos‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2216, 17, 21syl2an 598 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((cos‘𝐴) − -1) = (1 + (cos‘𝐴)))
2322breq2d 5045 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ 0 ≤ (1 + (cos‘𝐴))))
24 renegcl 10942 . . . . . . . 8 (1 ∈ ℝ → -1 ∈ ℝ)
25 subge0 11146 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ -1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2624, 25sylan2 595 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ ((cos‘𝐴) − -1) ↔ -1 ≤ (cos‘𝐴)))
2710ancoms 462 . . . . . . . 8 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (cos‘𝐴)) ∈ ℝ)
28 halfnneg2 11860 . . . . . . . 8 ((1 + (cos‘𝐴)) ∈ ℝ → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
2927, 28syl 17 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (1 + (cos‘𝐴)) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3023, 26, 293bitr3d 312 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3115, 8, 30sylancl 589 . . . . 5 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ↔ 0 ≤ ((1 + (cos‘𝐴)) / 2)))
3214, 31mpbid 235 . . . 4 (𝐴 ∈ ℝ → 0 ≤ ((1 + (cos‘𝐴)) / 2))
335, 32syl 17 . . 3 (𝐴 ∈ (-π[,]π) → 0 ≤ ((1 + (cos‘𝐴)) / 2))
3412, 33resqrtcld 14773 . 2 (𝐴 ∈ (-π[,]π) → (√‘((1 + (cos‘𝐴)) / 2)) ∈ ℝ)
352, 1elicc2i 12795 . . . 4 (𝐴 ∈ (-π[,]π) ↔ (𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π))
36 2re 11703 . . . . . . . . . . 11 2 ∈ ℝ
37 2pos 11732 . . . . . . . . . . 11 0 < 2
3836, 37pm3.2i 474 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
39 lediv1 11498 . . . . . . . . . 10 ((-π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
402, 38, 39mp3an13 1449 . . . . . . . . 9 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ (-π / 2) ≤ (𝐴 / 2)))
41 picn 25056 . . . . . . . . . . 11 π ∈ ℂ
42 2cn 11704 . . . . . . . . . . 11 2 ∈ ℂ
43 2ne0 11733 . . . . . . . . . . 11 2 ≠ 0
44 divneg 11325 . . . . . . . . . . 11 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4541, 42, 43, 44mp3an 1458 . . . . . . . . . 10 -(π / 2) = (-π / 2)
4645breq1i 5040 . . . . . . . . 9 (-(π / 2) ≤ (𝐴 / 2) ↔ (-π / 2) ≤ (𝐴 / 2))
4740, 46syl6bbr 292 . . . . . . . 8 (𝐴 ∈ ℝ → (-π ≤ 𝐴 ↔ -(π / 2) ≤ (𝐴 / 2)))
48 lediv1 11498 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
491, 38, 48mp3an23 1450 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ≤ π ↔ (𝐴 / 2) ≤ (π / 2)))
5047, 49anbi12d 633 . . . . . . 7 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
51 rehalfcl 11855 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
5251rexrd 10684 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ*)
53 halfpire 25061 . . . . . . . . . . 11 (π / 2) ∈ ℝ
5453renegcli 10940 . . . . . . . . . 10 -(π / 2) ∈ ℝ
5554rexri 10692 . . . . . . . . 9 -(π / 2) ∈ ℝ*
5653rexri 10692 . . . . . . . . 9 (π / 2) ∈ ℝ*
57 elicc4 12796 . . . . . . . . 9 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (𝐴 / 2) ∈ ℝ*) → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5855, 56, 57mp3an12 1448 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ* → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
5952, 58syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) ↔ (-(π / 2) ≤ (𝐴 / 2) ∧ (𝐴 / 2) ≤ (π / 2))))
6050, 59bitr4d 285 . . . . . 6 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) ↔ (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
6160biimpd 232 . . . . 5 (𝐴 ∈ ℝ → ((-π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2))))
62613impib 1113 . . . 4 ((𝐴 ∈ ℝ ∧ -π ≤ 𝐴𝐴 ≤ π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
6335, 62sylbi 220 . . 3 (𝐴 ∈ (-π[,]π) → (𝐴 / 2) ∈ (-(π / 2)[,](π / 2)))
64 cosq14ge0 25108 . . 3 ((𝐴 / 2) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
6563, 64syl 17 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (cos‘(𝐴 / 2)))
6612, 33sqrtge0d 14776 . 2 (𝐴 ∈ (-π[,]π) → 0 ≤ (√‘((1 + (cos‘𝐴)) / 2)))
675recnd 10662 . . 3 (𝐴 ∈ (-π[,]π) → 𝐴 ∈ ℂ)
68 ax-1cn 10588 . . . . . . 7 1 ∈ ℂ
69 coscl 15476 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
70 addcl 10612 . . . . . . 7 ((1 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → (1 + (cos‘𝐴)) ∈ ℂ)
7168, 69, 70sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) ∈ ℂ)
7271halfcld 11874 . . . . 5 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) ∈ ℂ)
7372sqsqrtd 14795 . . . 4 (𝐴 ∈ ℂ → ((√‘((1 + (cos‘𝐴)) / 2))↑2) = ((1 + (cos‘𝐴)) / 2))
74 divcan2 11299 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7542, 43, 74mp3an23 1450 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7675fveq2d 6653 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
77 halfcl 11854 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ)
78 cos2t 15527 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
7977, 78syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8076, 79eqtr3d 2838 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
8180oveq2d 7155 . . . . 5 (𝐴 ∈ ℂ → (1 + (cos‘𝐴)) = (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)))
8281oveq1d 7154 . . . 4 (𝐴 ∈ ℂ → ((1 + (cos‘𝐴)) / 2) = ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2))
8377coscld 15480 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(𝐴 / 2)) ∈ ℂ)
8483sqcld 13508 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) ∈ ℂ)
85 mulcl 10614 . . . . . . . . 9 ((2 ∈ ℂ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℂ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
8642, 85mpan 689 . . . . . . . 8 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ)
87 pncan3 10887 . . . . . . . 8 ((1 ∈ ℂ ∧ (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℂ) → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8868, 86, 87sylancr 590 . . . . . . 7 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → (1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) = (2 · ((cos‘(𝐴 / 2))↑2)))
8988oveq1d 7154 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((2 · ((cos‘(𝐴 / 2))↑2)) / 2))
90 divcan3 11317 . . . . . . 7 ((((cos‘(𝐴 / 2))↑2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9142, 43, 90mp3an23 1450 . . . . . 6 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((2 · ((cos‘(𝐴 / 2))↑2)) / 2) = ((cos‘(𝐴 / 2))↑2))
9289, 91eqtrd 2836 . . . . 5 (((cos‘(𝐴 / 2))↑2) ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9384, 92syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + ((2 · ((cos‘(𝐴 / 2))↑2)) − 1)) / 2) = ((cos‘(𝐴 / 2))↑2))
9473, 82, 933eqtrrd 2841 . . 3 (𝐴 ∈ ℂ → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
9567, 94syl 17 . 2 (𝐴 ∈ (-π[,]π) → ((cos‘(𝐴 / 2))↑2) = ((√‘((1 + (cos‘𝐴)) / 2))↑2))
967, 34, 65, 66, 95sq11d 13621 1 (𝐴 ∈ (-π[,]π) → (cos‘(𝐴 / 2)) = (√‘((1 + (cos‘𝐴)) / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  *cxr 10667   < clt 10668  cle 10669  cmin 10863  -cneg 10864   / cdiv 11290  2c2 11684  [,]cicc 12733  cexp 13429  csqrt 14588  cosccos 15414  πcpi 15416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474
This theorem is referenced by:  tan2h  35048
  Copyright terms: Public domain W3C validator