| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version | ||
| Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
| elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | elicc2 13348 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-icc 13289 |
| This theorem is referenced by: elicc01 13403 sinbnd2 16126 cosbnd2 16127 iihalf1 24858 iihalf2 24861 elii1 24864 elii2 24865 xrhmeo 24877 oprpiece1res2 24883 pco0 24947 pcoval2 24949 pcoass 24957 vitalilem2 25543 vitali 25547 coseq00topi 26444 coseq0negpitopi 26445 sinq12ge0 26450 cosq14ge0 26453 cosordlem 26472 cosord 26473 cos11 26475 sinord 26476 recosf1o 26477 resinf1o 26478 efif1olem3 26486 argregt0 26552 argrege0 26553 argimgt0 26554 logimul 26556 cxpsqrtlem 26644 acosbnd 26843 log2ub 26892 emcllem7 26945 emgt0 26950 harmonicbnd3 26951 harmoniclbnd 26952 harmonicubnd 26953 harmonicbnd4 26954 logdivbnd 27500 pntpbnd2 27531 sin2h 37597 cos2h 37598 asin1half 42338 lhe4.4ex1a 44311 fourierdlem40 46138 fourierdlem62 46159 fourierdlem78 46175 fourierdlem111 46208 sqwvfoura 46219 sqwvfourb 46220 |
| Copyright terms: Public domain | W3C validator |