MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2i Structured version   Visualization version   GIF version

Theorem elicc2i 13380
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
Hypotheses
Ref Expression
elicc2i.1 𝐴 ∈ ℝ
elicc2i.2 𝐵 ∈ ℝ
Assertion
Ref Expression
elicc2i (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))

Proof of Theorem elicc2i
StepHypRef Expression
1 elicc2i.1 . 2 𝐴 ∈ ℝ
2 elicc2i.2 . 2 𝐵 ∈ ℝ
3 elicc2 13379 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  cle 11216  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320
This theorem is referenced by:  elicc01  13434  sinbnd2  16157  cosbnd2  16158  iihalf1  24832  iihalf2  24835  elii1  24838  elii2  24839  xrhmeo  24851  oprpiece1res2  24857  pco0  24921  pcoval2  24923  pcoass  24931  vitalilem2  25517  vitali  25521  coseq00topi  26418  coseq0negpitopi  26419  sinq12ge0  26424  cosq14ge0  26427  cosordlem  26446  cosord  26447  cos11  26449  sinord  26450  recosf1o  26451  resinf1o  26452  efif1olem3  26460  argregt0  26526  argrege0  26527  argimgt0  26528  logimul  26530  cxpsqrtlem  26618  acosbnd  26817  log2ub  26866  emcllem7  26919  emgt0  26924  harmonicbnd3  26925  harmoniclbnd  26926  harmonicubnd  26927  harmonicbnd4  26928  logdivbnd  27474  pntpbnd2  27505  sin2h  37611  cos2h  37612  asin1half  42352  lhe4.4ex1a  44325  fourierdlem40  46152  fourierdlem62  46173  fourierdlem78  46189  fourierdlem111  46222  sqwvfoura  46233  sqwvfourb  46234
  Copyright terms: Public domain W3C validator