MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2i Structured version   Visualization version   GIF version

Theorem elicc2i 12451
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
Hypotheses
Ref Expression
elicc2i.1 𝐴 ∈ ℝ
elicc2i.2 𝐵 ∈ ℝ
Assertion
Ref Expression
elicc2i (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))

Proof of Theorem elicc2i
StepHypRef Expression
1 elicc2i.1 . 2 𝐴 ∈ ℝ
2 elicc2i.2 . 2 𝐵 ∈ ℝ
3 elicc2 12450 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
41, 2, 3mp2an 675 1 (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 197  w3a 1100  wcel 2155   class class class wbr 4837  (class class class)co 6868  cr 10214  cle 10354  [,]cicc 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-pre-lttri 10289  ax-pre-lttrn 10290
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-po 5226  df-so 5227  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-icc 12394
This theorem is referenced by:  elicc01  12504  sinbnd2  15126  cosbnd2  15127  iihalf1  22937  iihalf2  22939  elii1  22941  elii2  22942  xrhmeo  22952  oprpiece1res2  22958  pco0  23020  pcoval2  23022  pcoass  23030  vitalilem2  23584  vitali  23588  coseq00topi  24463  coseq0negpitopi  24464  sinq12ge0  24469  cosq14ge0  24472  cosordlem  24486  cosord  24487  cos11  24488  sinord  24489  recosf1o  24490  resinf1o  24491  efif1olem3  24499  argregt0  24564  argrege0  24565  argimgt0  24566  logimul  24568  cxpsqrtlem  24656  acosbnd  24835  log2ub  24884  emcllem7  24936  emgt0  24941  harmonicbnd3  24942  harmoniclbnd  24943  harmonicubnd  24944  harmonicbnd4  24945  logdivbnd  25453  pntpbnd2  25484  sin2h  33706  cos2h  33707  lhe4.4ex1a  39022  fourierdlem40  40837  fourierdlem62  40858  fourierdlem78  40874  fourierdlem111  40907  sqwvfoura  40918  sqwvfourb  40919
  Copyright terms: Public domain W3C validator