| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version | ||
| Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
| elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | elicc2 13314 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-icc 13255 |
| This theorem is referenced by: elicc01 13369 sinbnd2 16091 cosbnd2 16092 iihalf1 24823 iihalf2 24826 elii1 24829 elii2 24830 xrhmeo 24842 oprpiece1res2 24848 pco0 24912 pcoval2 24914 pcoass 24922 vitalilem2 25508 vitali 25512 coseq00topi 26409 coseq0negpitopi 26410 sinq12ge0 26415 cosq14ge0 26418 cosordlem 26437 cosord 26438 cos11 26440 sinord 26441 recosf1o 26442 resinf1o 26443 efif1olem3 26451 argregt0 26517 argrege0 26518 argimgt0 26519 logimul 26521 cxpsqrtlem 26609 acosbnd 26808 log2ub 26857 emcllem7 26910 emgt0 26915 harmonicbnd3 26916 harmoniclbnd 26917 harmonicubnd 26918 harmonicbnd4 26919 logdivbnd 27465 pntpbnd2 27496 sin2h 37594 cos2h 37595 asin1half 42334 lhe4.4ex1a 44306 fourierdlem40 46132 fourierdlem62 46153 fourierdlem78 46169 fourierdlem111 46202 sqwvfoura 46213 sqwvfourb 46214 |
| Copyright terms: Public domain | W3C validator |