![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | elicc2 13448 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 ≤ cle 11293 [,]cicc 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-icc 13390 |
This theorem is referenced by: elicc01 13502 sinbnd2 16214 cosbnd2 16215 iihalf1 24971 iihalf2 24974 elii1 24977 elii2 24978 xrhmeo 24990 oprpiece1res2 24996 pco0 25060 pcoval2 25062 pcoass 25070 vitalilem2 25657 vitali 25661 coseq00topi 26558 coseq0negpitopi 26559 sinq12ge0 26564 cosq14ge0 26567 cosordlem 26586 cosord 26587 cos11 26589 sinord 26590 recosf1o 26591 resinf1o 26592 efif1olem3 26600 argregt0 26666 argrege0 26667 argimgt0 26668 logimul 26670 cxpsqrtlem 26758 acosbnd 26957 log2ub 27006 emcllem7 27059 emgt0 27064 harmonicbnd3 27065 harmoniclbnd 27066 harmonicubnd 27067 harmonicbnd4 27068 logdivbnd 27614 pntpbnd2 27645 sin2h 37596 cos2h 37597 asin1half 42365 lhe4.4ex1a 44324 fourierdlem40 46102 fourierdlem62 46123 fourierdlem78 46139 fourierdlem111 46172 sqwvfoura 46183 sqwvfourb 46184 |
Copyright terms: Public domain | W3C validator |