![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | elicc2 13424 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 ℝcr 11139 ≤ cle 11281 [,]cicc 13362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-icc 13366 |
This theorem is referenced by: elicc01 13478 sinbnd2 16162 cosbnd2 16163 iihalf1 24896 iihalf2 24899 elii1 24902 elii2 24903 xrhmeo 24915 oprpiece1res2 24921 pco0 24985 pcoval2 24987 pcoass 24995 vitalilem2 25582 vitali 25586 coseq00topi 26482 coseq0negpitopi 26483 sinq12ge0 26488 cosq14ge0 26491 cosordlem 26509 cosord 26510 cos11 26512 sinord 26513 recosf1o 26514 resinf1o 26515 efif1olem3 26523 argregt0 26589 argrege0 26590 argimgt0 26591 logimul 26593 cxpsqrtlem 26681 acosbnd 26877 log2ub 26926 emcllem7 26979 emgt0 26984 harmonicbnd3 26985 harmoniclbnd 26986 harmonicubnd 26987 harmonicbnd4 26988 logdivbnd 27534 pntpbnd2 27565 sin2h 37211 cos2h 37212 lhe4.4ex1a 43905 fourierdlem40 45670 fourierdlem62 45691 fourierdlem78 45707 fourierdlem111 45740 sqwvfoura 45751 sqwvfourb 45752 |
Copyright terms: Public domain | W3C validator |