![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version |
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
Ref | Expression |
---|---|
elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | elicc2 13472 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: elicc01 13526 sinbnd2 16230 cosbnd2 16231 iihalf1 24977 iihalf2 24980 elii1 24983 elii2 24984 xrhmeo 24996 oprpiece1res2 25002 pco0 25066 pcoval2 25068 pcoass 25076 vitalilem2 25663 vitali 25667 coseq00topi 26562 coseq0negpitopi 26563 sinq12ge0 26568 cosq14ge0 26571 cosordlem 26590 cosord 26591 cos11 26593 sinord 26594 recosf1o 26595 resinf1o 26596 efif1olem3 26604 argregt0 26670 argrege0 26671 argimgt0 26672 logimul 26674 cxpsqrtlem 26762 acosbnd 26961 log2ub 27010 emcllem7 27063 emgt0 27068 harmonicbnd3 27069 harmoniclbnd 27070 harmonicubnd 27071 harmonicbnd4 27072 logdivbnd 27618 pntpbnd2 27649 sin2h 37570 cos2h 37571 asin1half 42339 lhe4.4ex1a 44298 fourierdlem40 46068 fourierdlem62 46089 fourierdlem78 46105 fourierdlem111 46138 sqwvfoura 46149 sqwvfourb 46150 |
Copyright terms: Public domain | W3C validator |