MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2i Structured version   Visualization version   GIF version

Theorem elicc2i 13349
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
Hypotheses
Ref Expression
elicc2i.1 𝐴 ∈ ℝ
elicc2i.2 𝐵 ∈ ℝ
Assertion
Ref Expression
elicc2i (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))

Proof of Theorem elicc2i
StepHypRef Expression
1 elicc2i.1 . 2 𝐴 ∈ ℝ
2 elicc2i.2 . 2 𝐵 ∈ ℝ
3 elicc2 13348 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  cle 11185  [,]cicc 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-icc 13289
This theorem is referenced by:  elicc01  13403  sinbnd2  16126  cosbnd2  16127  iihalf1  24801  iihalf2  24804  elii1  24807  elii2  24808  xrhmeo  24820  oprpiece1res2  24826  pco0  24890  pcoval2  24892  pcoass  24900  vitalilem2  25486  vitali  25490  coseq00topi  26387  coseq0negpitopi  26388  sinq12ge0  26393  cosq14ge0  26396  cosordlem  26415  cosord  26416  cos11  26418  sinord  26419  recosf1o  26420  resinf1o  26421  efif1olem3  26429  argregt0  26495  argrege0  26496  argimgt0  26497  logimul  26499  cxpsqrtlem  26587  acosbnd  26786  log2ub  26835  emcllem7  26888  emgt0  26893  harmonicbnd3  26894  harmoniclbnd  26895  harmonicubnd  26896  harmonicbnd4  26897  logdivbnd  27443  pntpbnd2  27474  sin2h  37577  cos2h  37578  asin1half  42318  lhe4.4ex1a  44291  fourierdlem40  46118  fourierdlem62  46139  fourierdlem78  46155  fourierdlem111  46188  sqwvfoura  46199  sqwvfourb  46200
  Copyright terms: Public domain W3C validator