| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc2i | Structured version Visualization version GIF version | ||
| Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.) |
| Ref | Expression |
|---|---|
| elicc2i.1 | ⊢ 𝐴 ∈ ℝ |
| elicc2i.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| elicc2i | ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elicc2i.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | elicc2i.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | elicc2 13379 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: elicc01 13434 sinbnd2 16157 cosbnd2 16158 iihalf1 24832 iihalf2 24835 elii1 24838 elii2 24839 xrhmeo 24851 oprpiece1res2 24857 pco0 24921 pcoval2 24923 pcoass 24931 vitalilem2 25517 vitali 25521 coseq00topi 26418 coseq0negpitopi 26419 sinq12ge0 26424 cosq14ge0 26427 cosordlem 26446 cosord 26447 cos11 26449 sinord 26450 recosf1o 26451 resinf1o 26452 efif1olem3 26460 argregt0 26526 argrege0 26527 argimgt0 26528 logimul 26530 cxpsqrtlem 26618 acosbnd 26817 log2ub 26866 emcllem7 26919 emgt0 26924 harmonicbnd3 26925 harmoniclbnd 26926 harmonicubnd 26927 harmonicbnd4 26928 logdivbnd 27474 pntpbnd2 27505 sin2h 37611 cos2h 37612 asin1half 42352 lhe4.4ex1a 44325 fourierdlem40 46152 fourierdlem62 46173 fourierdlem78 46189 fourierdlem111 46222 sqwvfoura 46233 sqwvfourb 46234 |
| Copyright terms: Public domain | W3C validator |