MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2i Structured version   Visualization version   GIF version

Theorem elicc2i 13449
Description: Inference for membership in a closed interval. (Contributed by Scott Fenton, 3-Jun-2013.)
Hypotheses
Ref Expression
elicc2i.1 𝐴 ∈ ℝ
elicc2i.2 𝐵 ∈ ℝ
Assertion
Ref Expression
elicc2i (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))

Proof of Theorem elicc2i
StepHypRef Expression
1 elicc2i.1 . 2 𝐴 ∈ ℝ
2 elicc2i.2 . 2 𝐵 ∈ ℝ
3 elicc2 13448 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
41, 2, 3mp2an 692 1 (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086  wcel 2105   class class class wbr 5147  (class class class)co 7430  cr 11151  cle 11293  [,]cicc 13386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-pre-lttri 11226  ax-pre-lttrn 11227
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-icc 13390
This theorem is referenced by:  elicc01  13502  sinbnd2  16214  cosbnd2  16215  iihalf1  24971  iihalf2  24974  elii1  24977  elii2  24978  xrhmeo  24990  oprpiece1res2  24996  pco0  25060  pcoval2  25062  pcoass  25070  vitalilem2  25657  vitali  25661  coseq00topi  26558  coseq0negpitopi  26559  sinq12ge0  26564  cosq14ge0  26567  cosordlem  26586  cosord  26587  cos11  26589  sinord  26590  recosf1o  26591  resinf1o  26592  efif1olem3  26600  argregt0  26666  argrege0  26667  argimgt0  26668  logimul  26670  cxpsqrtlem  26758  acosbnd  26957  log2ub  27006  emcllem7  27059  emgt0  27064  harmonicbnd3  27065  harmoniclbnd  27066  harmonicubnd  27067  harmonicbnd4  27068  logdivbnd  27614  pntpbnd2  27645  sin2h  37596  cos2h  37597  asin1half  42365  lhe4.4ex1a  44324  fourierdlem40  46102  fourierdlem62  46123  fourierdlem78  46139  fourierdlem111  46172  sqwvfoura  46183  sqwvfourb  46184
  Copyright terms: Public domain W3C validator