Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addass Structured version   Visualization version   GIF version

Theorem xrge0addass 30604
Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Assertion
Ref Expression
xrge0addass ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xrge0addass
StepHypRef Expression
1 iccssxr 12807 . . 3 (0[,]+∞) ⊆ ℝ*
2 simp1 1128 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3962 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*)
4 0xr 10676 . . . . . . 7 0 ∈ ℝ*
54a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ∈ ℝ*)
6 pnfxr 10683 . . . . . . 7 +∞ ∈ ℝ*
76a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → +∞ ∈ ℝ*)
8 elicc4 12791 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
95, 7, 3, 8syl3anc 1363 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
102, 9mpbid 233 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐴𝐴 ≤ +∞))
1110simpld 495 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
12 ge0nemnf 12554 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
133, 11, 12syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ≠ -∞)
14 simp2 1129 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
151, 14sseldi 3962 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
16 elicc4 12791 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
175, 7, 15, 16syl3anc 1363 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
1814, 17mpbid 233 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐵𝐵 ≤ +∞))
1918simpld 495 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
20 ge0nemnf 12554 . . 3 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → 𝐵 ≠ -∞)
2115, 19, 20syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ≠ -∞)
22 simp3 1130 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
231, 22sseldi 3962 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*)
24 elicc4 12791 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
255, 7, 23, 24syl3anc 1363 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
2622, 25mpbid 233 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐶𝐶 ≤ +∞))
2726simpld 495 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐶)
28 ge0nemnf 12554 . . 3 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
2923, 27, 28syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ≠ -∞)
30 xaddass 12630 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
313, 13, 15, 21, 23, 29, 30syl222anc 1378 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  (class class class)co 7145  0cc0 10525  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662  cle 10664   +𝑒 cxad 12493  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-addass 10590  ax-i2m1 10593  ax-rnegex 10596  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-xadd 12496  df-icc 12733
This theorem is referenced by:  inelcarsg  31468
  Copyright terms: Public domain W3C validator