Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addass Structured version   Visualization version   GIF version

Theorem xrge0addass 32997
Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Assertion
Ref Expression
xrge0addass ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xrge0addass
StepHypRef Expression
1 iccssxr 13330 . . 3 (0[,]+∞) ⊆ ℝ*
2 simp1 1136 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sselid 3927 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*)
4 0xr 11159 . . . . . . 7 0 ∈ ℝ*
54a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ∈ ℝ*)
6 pnfxr 11166 . . . . . . 7 +∞ ∈ ℝ*
76a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → +∞ ∈ ℝ*)
8 elicc4 13313 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
95, 7, 3, 8syl3anc 1373 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
102, 9mpbid 232 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐴𝐴 ≤ +∞))
1110simpld 494 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
12 ge0nemnf 13072 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
133, 11, 12syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ≠ -∞)
14 simp2 1137 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
151, 14sselid 3927 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
16 elicc4 13313 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
175, 7, 15, 16syl3anc 1373 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
1814, 17mpbid 232 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐵𝐵 ≤ +∞))
1918simpld 494 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
20 ge0nemnf 13072 . . 3 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → 𝐵 ≠ -∞)
2115, 19, 20syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ≠ -∞)
22 simp3 1138 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
231, 22sselid 3927 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*)
24 elicc4 13313 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
255, 7, 23, 24syl3anc 1373 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
2622, 25mpbid 232 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐶𝐶 ≤ +∞))
2726simpld 494 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐶)
28 ge0nemnf 13072 . . 3 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
2923, 27, 28syl2anc 584 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ≠ -∞)
30 xaddass 13148 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
313, 13, 15, 21, 23, 29, 30syl222anc 1388 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145  cle 11147   +𝑒 cxad 13009  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-addass 11071  ax-i2m1 11074  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-xadd 13012  df-icc 13252
This theorem is referenced by:  inelcarsg  34324
  Copyright terms: Public domain W3C validator