Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsincmulx Structured version   Visualization version   GIF version

Theorem itgsincmulx 45972
Description: Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsincmulx.a (𝜑𝐴 ∈ ℂ)
itgsincmulx.an0 (𝜑𝐴 ≠ 0)
itgsincmulx.b (𝜑𝐵 ∈ ℝ)
itgsincmulx.c (𝜑𝐶 ∈ ℝ)
itgsincmulx.blec (𝜑𝐵𝐶)
Assertion
Ref Expression
itgsincmulx (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgsincmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))
2 itgsincmulx.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
53, 4mulcld 11194 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
65coscld 16099 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
76negcld 11520 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → -(cos‘(𝐴 · 𝑦)) ∈ ℂ)
8 itgsincmulx.an0 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
98adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
107, 3, 9divcld 11958 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
11 cnelprrecn 11161 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
1211a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
135sincld 16098 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
1413negcld 11520 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
153, 14mulcld 11194 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
1615negcld 11520 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → -(𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
17 dvcosax 45924 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
182, 17syl 17 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
1912, 6, 15, 18dvmptneg 25870 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ -(cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ -(𝐴 · -(sin‘(𝐴 · 𝑦)))))
2012, 7, 16, 19, 2, 8dvmptdivc 25869 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)))
2115, 3, 9divnegd 11971 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2221eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2314, 3, 9divcan3d 11963 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → ((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -(sin‘(𝐴 · 𝑦)))
2423negeqd 11415 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = --(sin‘(𝐴 · 𝑦)))
2513negnegd 11524 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → --(sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑦)))
2622, 24, 253eqtrd 2768 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (sin‘(𝐴 · 𝑦)))
2726mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
2820, 27eqtrd 2764 . . . . . . 7 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
29 itgsincmulx.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
30 itgsincmulx.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
311, 10, 28, 13, 29, 30dvmptresicc 25817 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
3231fveq1d 6860 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
3332adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
34 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
35 oveq2 7395 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
3635fveq2d 6862 . . . . . 6 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
3736adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
38 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
392adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
40 ioosscn 13369 . . . . . . . 8 (𝐵(,)𝐶) ⊆ ℂ
4140, 38sselid 3944 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
4239, 41mulcld 11194 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
4342sincld 16098 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4434, 37, 38, 43fvmptd 6975 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥) = (sin‘(𝐴 · 𝑥)))
4533, 44eqtr2d 2765 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
4645itgeq2dv 25683 . 2 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
47 itgsincmulx.blec . . 3 (𝜑𝐵𝐶)
48 sincn 26354 . . . . . 6 sin ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . 5 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5040a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
51 ssid 3969 . . . . . . . 8 ℂ ⊆ ℂ
5251a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
5350, 2, 52constcncfg 45870 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5450, 52idcncfg 45871 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5553, 54mulcncf 25346 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5649, 55cncfmpt1f 24807 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5731, 56eqeltrd 2828 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
58 ioossicc 13394 . . . . . 6 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
5958a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
60 ioombl 25466 . . . . . 6 (𝐵(,)𝐶) ∈ dom vol
6160a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
622adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
6329, 30iccssred 13395 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
64 ax-resscn 11125 . . . . . . . . 9 ℝ ⊆ ℂ
6563, 64sstrdi 3959 . . . . . . . 8 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
6665sselda 3946 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
6762, 66mulcld 11194 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
6867sincld 16098 . . . . 5 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
6965, 2, 52constcncfg 45870 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7065, 52idcncfg 45871 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7169, 70mulcncf 25346 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7249, 71cncfmpt1f 24807 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
73 cniccibl 25742 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7429, 30, 72, 73syl3anc 1373 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7559, 61, 68, 74iblss 25706 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7631, 75eqeltrd 2828 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
77 coscn 26355 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
7877a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
7978, 71cncfmpt1f 24807 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8079negcncfg 45879 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ -(cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
818neneqd 2930 . . . . . . 7 (𝜑 → ¬ 𝐴 = 0)
82 elsng 4603 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
832, 82syl 17 . . . . . . 7 (𝜑 → (𝐴 ∈ {0} ↔ 𝐴 = 0))
8481, 83mtbird 325 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ {0})
852, 84eldifd 3925 . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ {0}))
86 difssd 4100 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
8765, 85, 86constcncfg 45870 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
8880, 87divcncf 25348 . . 3 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8929, 30, 47, 57, 76, 88ftc2 25951 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
90 eqidd 2730 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))
91 oveq2 7395 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
9291fveq2d 6862 . . . . . . . . 9 (𝑦 = 𝐶 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐶)))
9392negeqd 11415 . . . . . . . 8 (𝑦 = 𝐶 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐶)))
9493oveq1d 7402 . . . . . . 7 (𝑦 = 𝐶 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9594adantl 481 . . . . . 6 ((𝜑𝑦 = 𝐶) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9629rexrd 11224 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
9730rexrd 11224 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
98 ubicc2 13426 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9996, 97, 47, 98syl3anc 1373 . . . . . 6 (𝜑𝐶 ∈ (𝐵[,]𝐶))
100 ovexd 7422 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V)
10190, 95, 99, 100fvmptd 6975 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
102 oveq2 7395 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
103102fveq2d 6862 . . . . . . . . 9 (𝑦 = 𝐵 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐵)))
104103negeqd 11415 . . . . . . . 8 (𝑦 = 𝐵 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐵)))
105104oveq1d 7402 . . . . . . 7 (𝑦 = 𝐵 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
106105adantl 481 . . . . . 6 ((𝜑𝑦 = 𝐵) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
107 lbicc2 13425 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10896, 97, 47, 107syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ (𝐵[,]𝐶))
109 ovexd 7422 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V)
11090, 106, 108, 109fvmptd 6975 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
111101, 110oveq12d 7405 . . . 4 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)))
11229recnd 11202 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1132, 112mulcld 11194 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
114113coscld 16099 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐵)) ∈ ℂ)
115114, 2, 8divnegd 11971 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐵)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
116115eqcomd 2735 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) = -((cos‘(𝐴 · 𝐵)) / 𝐴))
117116oveq2d 7403 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)))
11830recnd 11202 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1192, 118mulcld 11194 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
120119coscld 16099 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐶)) ∈ ℂ)
121120negcld 11520 . . . . . 6 (𝜑 → -(cos‘(𝐴 · 𝐶)) ∈ ℂ)
122121, 2, 8divcld 11958 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
123114, 2, 8divcld 11958 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
124122, 123subnegd 11540 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
125111, 117, 1243eqtrd 2768 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
126122, 123addcomd 11376 . . 3 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)))
127120, 2, 8divnegd 11971 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐶)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
128127eqcomd 2735 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) = -((cos‘(𝐴 · 𝐶)) / 𝐴))
129128oveq2d 7403 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)))
130120, 2, 8divcld 11958 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
131123, 130negsubd 11539 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
132114, 120, 2, 8divsubdird 11997 . . . . 5 (𝜑 → (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
133132eqcomd 2735 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
134129, 131, 1333eqtrd 2768 . . 3 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
135125, 126, 1343eqtrd 2768 . 2 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
13646, 89, 1353eqtrd 2768 1 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  cdif 3911  wss 3914  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  *cxr 11207  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  (,)cioo 13306  [,]cicc 13309  sincsin 16029  cosccos 16030  cnccncf 24769  volcvol 25364  𝐿1cibl 25518  citg 25519   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-symdif 4216  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571  df-limc 25767  df-dv 25768
This theorem is referenced by:  sqwvfourb  46227
  Copyright terms: Public domain W3C validator