Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsincmulx Structured version   Visualization version   GIF version

Theorem itgsincmulx 45895
Description: Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsincmulx.a (𝜑𝐴 ∈ ℂ)
itgsincmulx.an0 (𝜑𝐴 ≠ 0)
itgsincmulx.b (𝜑𝐵 ∈ ℝ)
itgsincmulx.c (𝜑𝐶 ∈ ℝ)
itgsincmulx.blec (𝜑𝐵𝐶)
Assertion
Ref Expression
itgsincmulx (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgsincmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . . 7 (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))
2 itgsincmulx.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
32adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 484 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
53, 4mulcld 11310 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
65coscld 16179 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
76negcld 11634 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → -(cos‘(𝐴 · 𝑦)) ∈ ℂ)
8 itgsincmulx.an0 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
98adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
107, 3, 9divcld 12070 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
11 cnelprrecn 11277 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
1211a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
135sincld 16178 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
1413negcld 11634 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
153, 14mulcld 11310 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
1615negcld 11634 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → -(𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
17 dvcosax 45847 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
182, 17syl 17 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
1912, 6, 15, 18dvmptneg 26024 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ -(cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ -(𝐴 · -(sin‘(𝐴 · 𝑦)))))
2012, 7, 16, 19, 2, 8dvmptdivc 26023 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)))
2115, 3, 9divnegd 12083 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2221eqcomd 2746 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2314, 3, 9divcan3d 12075 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → ((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -(sin‘(𝐴 · 𝑦)))
2423negeqd 11530 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = --(sin‘(𝐴 · 𝑦)))
2513negnegd 11638 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → --(sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑦)))
2622, 24, 253eqtrd 2784 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (sin‘(𝐴 · 𝑦)))
2726mpteq2dva 5266 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
2820, 27eqtrd 2780 . . . . . . 7 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
29 itgsincmulx.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
30 itgsincmulx.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
311, 10, 28, 13, 29, 30dvmptresicc 25971 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
3231fveq1d 6922 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
3332adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
34 eqidd 2741 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
35 oveq2 7456 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
3635fveq2d 6924 . . . . . 6 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
3736adantl 481 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
38 simpr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
392adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
40 ioosscn 13469 . . . . . . . 8 (𝐵(,)𝐶) ⊆ ℂ
4140, 38sselid 4006 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
4239, 41mulcld 11310 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
4342sincld 16178 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4434, 37, 38, 43fvmptd 7036 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥) = (sin‘(𝐴 · 𝑥)))
4533, 44eqtr2d 2781 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
4645itgeq2dv 25837 . 2 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
47 itgsincmulx.blec . . 3 (𝜑𝐵𝐶)
48 sincn 26506 . . . . . 6 sin ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . 5 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5040a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
51 ssid 4031 . . . . . . . 8 ℂ ⊆ ℂ
5251a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
5350, 2, 52constcncfg 45793 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5450, 52idcncfg 45794 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5553, 54mulcncf 25499 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5649, 55cncfmpt1f 24959 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5731, 56eqeltrd 2844 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
58 ioossicc 13493 . . . . . 6 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
5958a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
60 ioombl 25619 . . . . . 6 (𝐵(,)𝐶) ∈ dom vol
6160a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
622adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
6329, 30iccssred 13494 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
64 ax-resscn 11241 . . . . . . . . 9 ℝ ⊆ ℂ
6563, 64sstrdi 4021 . . . . . . . 8 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
6665sselda 4008 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
6762, 66mulcld 11310 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
6867sincld 16178 . . . . 5 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
6965, 2, 52constcncfg 45793 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7065, 52idcncfg 45794 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7169, 70mulcncf 25499 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7249, 71cncfmpt1f 24959 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
73 cniccibl 25896 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7429, 30, 72, 73syl3anc 1371 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7559, 61, 68, 74iblss 25860 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7631, 75eqeltrd 2844 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
77 coscn 26507 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
7877a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
7978, 71cncfmpt1f 24959 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8079negcncfg 45802 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ -(cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
818neneqd 2951 . . . . . . 7 (𝜑 → ¬ 𝐴 = 0)
82 elsng 4662 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
832, 82syl 17 . . . . . . 7 (𝜑 → (𝐴 ∈ {0} ↔ 𝐴 = 0))
8481, 83mtbird 325 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ {0})
852, 84eldifd 3987 . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ {0}))
86 difssd 4160 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
8765, 85, 86constcncfg 45793 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
8880, 87divcncf 25501 . . 3 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8929, 30, 47, 57, 76, 88ftc2 26105 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
90 eqidd 2741 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))
91 oveq2 7456 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
9291fveq2d 6924 . . . . . . . . 9 (𝑦 = 𝐶 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐶)))
9392negeqd 11530 . . . . . . . 8 (𝑦 = 𝐶 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐶)))
9493oveq1d 7463 . . . . . . 7 (𝑦 = 𝐶 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9594adantl 481 . . . . . 6 ((𝜑𝑦 = 𝐶) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9629rexrd 11340 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
9730rexrd 11340 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
98 ubicc2 13525 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9996, 97, 47, 98syl3anc 1371 . . . . . 6 (𝜑𝐶 ∈ (𝐵[,]𝐶))
100 ovexd 7483 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V)
10190, 95, 99, 100fvmptd 7036 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
102 oveq2 7456 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
103102fveq2d 6924 . . . . . . . . 9 (𝑦 = 𝐵 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐵)))
104103negeqd 11530 . . . . . . . 8 (𝑦 = 𝐵 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐵)))
105104oveq1d 7463 . . . . . . 7 (𝑦 = 𝐵 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
106105adantl 481 . . . . . 6 ((𝜑𝑦 = 𝐵) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
107 lbicc2 13524 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10896, 97, 47, 107syl3anc 1371 . . . . . 6 (𝜑𝐵 ∈ (𝐵[,]𝐶))
109 ovexd 7483 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V)
11090, 106, 108, 109fvmptd 7036 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
111101, 110oveq12d 7466 . . . 4 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)))
11229recnd 11318 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1132, 112mulcld 11310 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
114113coscld 16179 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐵)) ∈ ℂ)
115114, 2, 8divnegd 12083 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐵)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
116115eqcomd 2746 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) = -((cos‘(𝐴 · 𝐵)) / 𝐴))
117116oveq2d 7464 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)))
11830recnd 11318 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1192, 118mulcld 11310 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
120119coscld 16179 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐶)) ∈ ℂ)
121120negcld 11634 . . . . . 6 (𝜑 → -(cos‘(𝐴 · 𝐶)) ∈ ℂ)
122121, 2, 8divcld 12070 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
123114, 2, 8divcld 12070 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
124122, 123subnegd 11654 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
125111, 117, 1243eqtrd 2784 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
126122, 123addcomd 11492 . . 3 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)))
127120, 2, 8divnegd 12083 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐶)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
128127eqcomd 2746 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) = -((cos‘(𝐴 · 𝐶)) / 𝐴))
129128oveq2d 7464 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)))
130120, 2, 8divcld 12070 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
131123, 130negsubd 11653 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
132114, 120, 2, 8divsubdird 12109 . . . . 5 (𝜑 → (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
133132eqcomd 2746 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
134129, 131, 1333eqtrd 2784 . . 3 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
135125, 126, 1343eqtrd 2784 . 2 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
13646, 89, 1353eqtrd 2784 1 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189  *cxr 11323  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  (,)cioo 13407  [,]cicc 13410  sincsin 16111  cosccos 16112  cnccncf 24921  volcvol 25517  𝐿1cibl 25671  citg 25672   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922
This theorem is referenced by:  sqwvfourb  46150
  Copyright terms: Public domain W3C validator