Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsincmulx Structured version   Visualization version   GIF version

Theorem itgsincmulx 44205
Description: Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsincmulx.a (𝜑𝐴 ∈ ℂ)
itgsincmulx.an0 (𝜑𝐴 ≠ 0)
itgsincmulx.b (𝜑𝐵 ∈ ℝ)
itgsincmulx.c (𝜑𝐶 ∈ ℝ)
itgsincmulx.blec (𝜑𝐵𝐶)
Assertion
Ref Expression
itgsincmulx (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgsincmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))
2 itgsincmulx.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
32adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 485 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
53, 4mulcld 11175 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
65coscld 16013 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
76negcld 11499 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → -(cos‘(𝐴 · 𝑦)) ∈ ℂ)
8 itgsincmulx.an0 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
98adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
107, 3, 9divcld 11931 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
11 cnelprrecn 11144 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
1211a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
135sincld 16012 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
1413negcld 11499 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
153, 14mulcld 11175 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
1615negcld 11499 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → -(𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
17 dvcosax 44157 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
182, 17syl 17 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
1912, 6, 15, 18dvmptneg 25330 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ -(cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ -(𝐴 · -(sin‘(𝐴 · 𝑦)))))
2012, 7, 16, 19, 2, 8dvmptdivc 25329 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)))
2115, 3, 9divnegd 11944 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2221eqcomd 2742 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2314, 3, 9divcan3d 11936 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → ((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -(sin‘(𝐴 · 𝑦)))
2423negeqd 11395 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = --(sin‘(𝐴 · 𝑦)))
2513negnegd 11503 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → --(sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑦)))
2622, 24, 253eqtrd 2780 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (sin‘(𝐴 · 𝑦)))
2726mpteq2dva 5205 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
2820, 27eqtrd 2776 . . . . . . 7 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
29 itgsincmulx.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
30 itgsincmulx.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
311, 10, 28, 13, 29, 30dvmptresicc 25280 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
3231fveq1d 6844 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
3332adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
34 eqidd 2737 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
35 oveq2 7365 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
3635fveq2d 6846 . . . . . 6 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
3736adantl 482 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
38 simpr 485 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
392adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
40 ioosscn 13326 . . . . . . . 8 (𝐵(,)𝐶) ⊆ ℂ
4140, 38sselid 3942 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
4239, 41mulcld 11175 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
4342sincld 16012 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4434, 37, 38, 43fvmptd 6955 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥) = (sin‘(𝐴 · 𝑥)))
4533, 44eqtr2d 2777 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
4645itgeq2dv 25146 . 2 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
47 itgsincmulx.blec . . 3 (𝜑𝐵𝐶)
48 sincn 25803 . . . . . 6 sin ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . 5 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5040a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
51 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
5251a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
5350, 2, 52constcncfg 44103 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5450, 52idcncfg 44104 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5553, 54mulcncf 24810 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5649, 55cncfmpt1f 24277 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5731, 56eqeltrd 2838 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
58 ioossicc 13350 . . . . . 6 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
5958a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
60 ioombl 24929 . . . . . 6 (𝐵(,)𝐶) ∈ dom vol
6160a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
622adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
6329, 30iccssred 13351 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
64 ax-resscn 11108 . . . . . . . . 9 ℝ ⊆ ℂ
6563, 64sstrdi 3956 . . . . . . . 8 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
6665sselda 3944 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
6762, 66mulcld 11175 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
6867sincld 16012 . . . . 5 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
6965, 2, 52constcncfg 44103 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7065, 52idcncfg 44104 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7169, 70mulcncf 24810 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7249, 71cncfmpt1f 24277 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
73 cniccibl 25205 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7429, 30, 72, 73syl3anc 1371 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7559, 61, 68, 74iblss 25169 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7631, 75eqeltrd 2838 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
77 coscn 25804 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
7877a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
7978, 71cncfmpt1f 24277 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8079negcncfg 44112 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ -(cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
818neneqd 2948 . . . . . . 7 (𝜑 → ¬ 𝐴 = 0)
82 elsng 4600 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
832, 82syl 17 . . . . . . 7 (𝜑 → (𝐴 ∈ {0} ↔ 𝐴 = 0))
8481, 83mtbird 324 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ {0})
852, 84eldifd 3921 . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ {0}))
86 difssd 4092 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
8765, 85, 86constcncfg 44103 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
8880, 87divcncf 24811 . . 3 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8929, 30, 47, 57, 76, 88ftc2 25408 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
90 eqidd 2737 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))
91 oveq2 7365 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
9291fveq2d 6846 . . . . . . . . 9 (𝑦 = 𝐶 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐶)))
9392negeqd 11395 . . . . . . . 8 (𝑦 = 𝐶 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐶)))
9493oveq1d 7372 . . . . . . 7 (𝑦 = 𝐶 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9594adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐶) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9629rexrd 11205 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
9730rexrd 11205 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
98 ubicc2 13382 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9996, 97, 47, 98syl3anc 1371 . . . . . 6 (𝜑𝐶 ∈ (𝐵[,]𝐶))
100 ovexd 7392 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V)
10190, 95, 99, 100fvmptd 6955 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
102 oveq2 7365 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
103102fveq2d 6846 . . . . . . . . 9 (𝑦 = 𝐵 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐵)))
104103negeqd 11395 . . . . . . . 8 (𝑦 = 𝐵 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐵)))
105104oveq1d 7372 . . . . . . 7 (𝑦 = 𝐵 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
106105adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐵) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
107 lbicc2 13381 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10896, 97, 47, 107syl3anc 1371 . . . . . 6 (𝜑𝐵 ∈ (𝐵[,]𝐶))
109 ovexd 7392 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V)
11090, 106, 108, 109fvmptd 6955 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
111101, 110oveq12d 7375 . . . 4 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)))
11229recnd 11183 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1132, 112mulcld 11175 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
114113coscld 16013 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐵)) ∈ ℂ)
115114, 2, 8divnegd 11944 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐵)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
116115eqcomd 2742 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) = -((cos‘(𝐴 · 𝐵)) / 𝐴))
117116oveq2d 7373 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)))
11830recnd 11183 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1192, 118mulcld 11175 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
120119coscld 16013 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐶)) ∈ ℂ)
121120negcld 11499 . . . . . 6 (𝜑 → -(cos‘(𝐴 · 𝐶)) ∈ ℂ)
122121, 2, 8divcld 11931 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
123114, 2, 8divcld 11931 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
124122, 123subnegd 11519 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
125111, 117, 1243eqtrd 2780 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
126122, 123addcomd 11357 . . 3 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)))
127120, 2, 8divnegd 11944 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐶)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
128127eqcomd 2742 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) = -((cos‘(𝐴 · 𝐶)) / 𝐴))
129128oveq2d 7373 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)))
130120, 2, 8divcld 11931 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
131123, 130negsubd 11518 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
132114, 120, 2, 8divsubdird 11970 . . . . 5 (𝜑 → (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
133132eqcomd 2742 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
134129, 131, 1333eqtrd 2780 . . 3 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
135125, 126, 1343eqtrd 2780 . 2 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
13646, 89, 1353eqtrd 2780 1 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  cdif 3907  wss 3910  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   + caddc 11054   · cmul 11056  *cxr 11188  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  (,)cioo 13264  [,]cicc 13267  sincsin 15946  cosccos 15947  cnccncf 24239  volcvol 24827  𝐿1cibl 24981  citg 24982   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230  df-dv 25231
This theorem is referenced by:  sqwvfourb  44460
  Copyright terms: Public domain W3C validator