Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgsincmulx Structured version   Visualization version   GIF version

Theorem itgsincmulx 43515
Description: Exercise: the integral of 𝑥 ↦ sin𝑎𝑥 on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgsincmulx.a (𝜑𝐴 ∈ ℂ)
itgsincmulx.an0 (𝜑𝐴 ≠ 0)
itgsincmulx.b (𝜑𝐵 ∈ ℝ)
itgsincmulx.c (𝜑𝐶 ∈ ℝ)
itgsincmulx.blec (𝜑𝐵𝐶)
Assertion
Ref Expression
itgsincmulx (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem itgsincmulx
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . 7 (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))
2 itgsincmulx.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
32adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
4 simpr 485 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
53, 4mulcld 10995 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
65coscld 15840 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (cos‘(𝐴 · 𝑦)) ∈ ℂ)
76negcld 11319 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → -(cos‘(𝐴 · 𝑦)) ∈ ℂ)
8 itgsincmulx.an0 . . . . . . . . 9 (𝜑𝐴 ≠ 0)
98adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ ℂ) → 𝐴 ≠ 0)
107, 3, 9divcld 11751 . . . . . . 7 ((𝜑𝑦 ∈ ℂ) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) ∈ ℂ)
11 cnelprrecn 10964 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
1211a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ {ℝ, ℂ})
135sincld 15839 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℂ) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
1413negcld 11319 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -(sin‘(𝐴 · 𝑦)) ∈ ℂ)
153, 14mulcld 10995 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
1615negcld 11319 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → -(𝐴 · -(sin‘(𝐴 · 𝑦))) ∈ ℂ)
17 dvcosax 43467 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
182, 17syl 17 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ (𝐴 · -(sin‘(𝐴 · 𝑦)))))
1912, 6, 15, 18dvmptneg 25130 . . . . . . . . 9 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ -(cos‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ -(𝐴 · -(sin‘(𝐴 · 𝑦)))))
2012, 7, 16, 19, 2, 8dvmptdivc 25129 . . . . . . . 8 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)))
2115, 3, 9divnegd 11764 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2221eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴))
2314, 3, 9divcan3d 11756 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℂ) → ((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = -(sin‘(𝐴 · 𝑦)))
2423negeqd 11215 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → -((𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = --(sin‘(𝐴 · 𝑦)))
2513negnegd 11323 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℂ) → --(sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑦)))
2622, 24, 253eqtrd 2782 . . . . . . . . 9 ((𝜑𝑦 ∈ ℂ) → (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴) = (sin‘(𝐴 · 𝑦)))
2726mpteq2dva 5174 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (-(𝐴 · -(sin‘(𝐴 · 𝑦))) / 𝐴)) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
2820, 27eqtrd 2778 . . . . . . 7 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ ℂ ↦ (sin‘(𝐴 · 𝑦))))
29 itgsincmulx.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
30 itgsincmulx.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
311, 10, 28, 13, 29, 30dvmptresicc 25080 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
3231fveq1d 6776 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
3332adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) = ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥))
34 eqidd 2739 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) = (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))))
35 oveq2 7283 . . . . . . 7 (𝑦 = 𝑥 → (𝐴 · 𝑦) = (𝐴 · 𝑥))
3635fveq2d 6778 . . . . . 6 (𝑦 = 𝑥 → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
3736adantl 482 . . . . 5 (((𝜑𝑥 ∈ (𝐵(,)𝐶)) ∧ 𝑦 = 𝑥) → (sin‘(𝐴 · 𝑦)) = (sin‘(𝐴 · 𝑥)))
38 simpr 485 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐵(,)𝐶))
392adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐴 ∈ ℂ)
40 ioosscn 13141 . . . . . . . 8 (𝐵(,)𝐶) ⊆ ℂ
4140, 38sselid 3919 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ℂ)
4239, 41mulcld 10995 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (𝐴 · 𝑥) ∈ ℂ)
4342sincld 15839 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) ∈ ℂ)
4434, 37, 38, 43fvmptd 6882 . . . 4 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → ((𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦)))‘𝑥) = (sin‘(𝐴 · 𝑥)))
4533, 44eqtr2d 2779 . . 3 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → (sin‘(𝐴 · 𝑥)) = ((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥))
4645itgeq2dv 24946 . 2 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥)
47 itgsincmulx.blec . . 3 (𝜑𝐵𝐶)
48 sincn 25603 . . . . . 6 sin ∈ (ℂ–cn→ℂ)
4948a1i 11 . . . . 5 (𝜑 → sin ∈ (ℂ–cn→ℂ))
5040a1i 11 . . . . . . 7 (𝜑 → (𝐵(,)𝐶) ⊆ ℂ)
51 ssid 3943 . . . . . . . 8 ℂ ⊆ ℂ
5251a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
5350, 2, 52constcncfg 43413 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝐴) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5450, 52idcncfg 43414 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ 𝑦) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5553, 54mulcncf 24610 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5649, 55cncfmpt1f 24077 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
5731, 56eqeltrd 2839 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ ((𝐵(,)𝐶)–cn→ℂ))
58 ioossicc 13165 . . . . . 6 (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶)
5958a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐵[,]𝐶))
60 ioombl 24729 . . . . . 6 (𝐵(,)𝐶) ∈ dom vol
6160a1i 11 . . . . 5 (𝜑 → (𝐵(,)𝐶) ∈ dom vol)
622adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝐴 ∈ ℂ)
6329, 30iccssred 13166 . . . . . . . . 9 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
64 ax-resscn 10928 . . . . . . . . 9 ℝ ⊆ ℂ
6563, 64sstrdi 3933 . . . . . . . 8 (𝜑 → (𝐵[,]𝐶) ⊆ ℂ)
6665sselda 3921 . . . . . . 7 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → 𝑦 ∈ ℂ)
6762, 66mulcld 10995 . . . . . 6 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (𝐴 · 𝑦) ∈ ℂ)
6867sincld 15839 . . . . 5 ((𝜑𝑦 ∈ (𝐵[,]𝐶)) → (sin‘(𝐴 · 𝑦)) ∈ ℂ)
6965, 2, 52constcncfg 43413 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7065, 52idcncfg 43414 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝑦) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7169, 70mulcncf 24610 . . . . . . 7 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (𝐴 · 𝑦)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
7249, 71cncfmpt1f 24077 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
73 cniccibl 25005 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ)) → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7429, 30, 72, 73syl3anc 1370 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7559, 61, 68, 74iblss 24969 . . . 4 (𝜑 → (𝑦 ∈ (𝐵(,)𝐶) ↦ (sin‘(𝐴 · 𝑦))) ∈ 𝐿1)
7631, 75eqeltrd 2839 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))) ∈ 𝐿1)
77 coscn 25604 . . . . . . 7 cos ∈ (ℂ–cn→ℂ)
7877a1i 11 . . . . . 6 (𝜑 → cos ∈ (ℂ–cn→ℂ))
7978, 71cncfmpt1f 24077 . . . . 5 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8079negcncfg 43422 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ -(cos‘(𝐴 · 𝑦))) ∈ ((𝐵[,]𝐶)–cn→ℂ))
818neneqd 2948 . . . . . . 7 (𝜑 → ¬ 𝐴 = 0)
82 elsng 4575 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 ∈ {0} ↔ 𝐴 = 0))
832, 82syl 17 . . . . . . 7 (𝜑 → (𝐴 ∈ {0} ↔ 𝐴 = 0))
8481, 83mtbird 325 . . . . . 6 (𝜑 → ¬ 𝐴 ∈ {0})
852, 84eldifd 3898 . . . . 5 (𝜑𝐴 ∈ (ℂ ∖ {0}))
86 difssd 4067 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
8765, 85, 86constcncfg 43413 . . . 4 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ 𝐴) ∈ ((𝐵[,]𝐶)–cn→(ℂ ∖ {0})))
8880, 87divcncf 24611 . . 3 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) ∈ ((𝐵[,]𝐶)–cn→ℂ))
8929, 30, 47, 57, 76, 88ftc2 25208 . 2 (𝜑 → ∫(𝐵(,)𝐶)((ℝ D (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))‘𝑥) d𝑥 = (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)))
90 eqidd 2739 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)) = (𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴)))
91 oveq2 7283 . . . . . . . . . 10 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
9291fveq2d 6778 . . . . . . . . 9 (𝑦 = 𝐶 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐶)))
9392negeqd 11215 . . . . . . . 8 (𝑦 = 𝐶 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐶)))
9493oveq1d 7290 . . . . . . 7 (𝑦 = 𝐶 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9594adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐶) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
9629rexrd 11025 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
9730rexrd 11025 . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
98 ubicc2 13197 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐶 ∈ (𝐵[,]𝐶))
9996, 97, 47, 98syl3anc 1370 . . . . . 6 (𝜑𝐶 ∈ (𝐵[,]𝐶))
100 ovexd 7310 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ V)
10190, 95, 99, 100fvmptd 6882 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
102 oveq2 7283 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
103102fveq2d 6778 . . . . . . . . 9 (𝑦 = 𝐵 → (cos‘(𝐴 · 𝑦)) = (cos‘(𝐴 · 𝐵)))
104103negeqd 11215 . . . . . . . 8 (𝑦 = 𝐵 → -(cos‘(𝐴 · 𝑦)) = -(cos‘(𝐴 · 𝐵)))
105104oveq1d 7290 . . . . . . 7 (𝑦 = 𝐵 → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
106105adantl 482 . . . . . 6 ((𝜑𝑦 = 𝐵) → (-(cos‘(𝐴 · 𝑦)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
107 lbicc2 13196 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
10896, 97, 47, 107syl3anc 1370 . . . . . 6 (𝜑𝐵 ∈ (𝐵[,]𝐶))
109 ovexd 7310 . . . . . 6 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) ∈ V)
11090, 106, 108, 109fvmptd 6882 . . . . 5 (𝜑 → ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
111101, 110oveq12d 7293 . . . 4 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)))
11229recnd 11003 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
1132, 112mulcld 10995 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
114113coscld 15840 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐵)) ∈ ℂ)
115114, 2, 8divnegd 11764 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐵)) / 𝐴) = (-(cos‘(𝐴 · 𝐵)) / 𝐴))
116115eqcomd 2744 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐵)) / 𝐴) = -((cos‘(𝐴 · 𝐵)) / 𝐴))
117116oveq2d 7291 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − (-(cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)))
11830recnd 11003 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
1192, 118mulcld 10995 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
120119coscld 15840 . . . . . . 7 (𝜑 → (cos‘(𝐴 · 𝐶)) ∈ ℂ)
121120negcld 11319 . . . . . 6 (𝜑 → -(cos‘(𝐴 · 𝐶)) ∈ ℂ)
122121, 2, 8divcld 11751 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
123114, 2, 8divcld 11751 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐵)) / 𝐴) ∈ ℂ)
124122, 123subnegd 11339 . . . 4 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) − -((cos‘(𝐴 · 𝐵)) / 𝐴)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
125111, 117, 1243eqtrd 2782 . . 3 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)))
126122, 123addcomd 11177 . . 3 (𝜑 → ((-(cos‘(𝐴 · 𝐶)) / 𝐴) + ((cos‘(𝐴 · 𝐵)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)))
127120, 2, 8divnegd 11764 . . . . . 6 (𝜑 → -((cos‘(𝐴 · 𝐶)) / 𝐴) = (-(cos‘(𝐴 · 𝐶)) / 𝐴))
128127eqcomd 2744 . . . . 5 (𝜑 → (-(cos‘(𝐴 · 𝐶)) / 𝐴) = -((cos‘(𝐴 · 𝐶)) / 𝐴))
129128oveq2d 7291 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)))
130120, 2, 8divcld 11751 . . . . 5 (𝜑 → ((cos‘(𝐴 · 𝐶)) / 𝐴) ∈ ℂ)
131123, 130negsubd 11338 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + -((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
132114, 120, 2, 8divsubdird 11790 . . . . 5 (𝜑 → (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴) = (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)))
133132eqcomd 2744 . . . 4 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) − ((cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
134129, 131, 1333eqtrd 2782 . . 3 (𝜑 → (((cos‘(𝐴 · 𝐵)) / 𝐴) + (-(cos‘(𝐴 · 𝐶)) / 𝐴)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
135125, 126, 1343eqtrd 2782 . 2 (𝜑 → (((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐶) − ((𝑦 ∈ (𝐵[,]𝐶) ↦ (-(cos‘(𝐴 · 𝑦)) / 𝐴))‘𝐵)) = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
13646, 89, 1353eqtrd 2782 1 (𝜑 → ∫(𝐵(,)𝐶)(sin‘(𝐴 · 𝑥)) d𝑥 = (((cos‘(𝐴 · 𝐵)) − (cos‘(𝐴 · 𝐶))) / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  *cxr 11008  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  (,)cioo 13079  [,]cicc 13082  sincsin 15773  cosccos 15774  cnccncf 24039  volcvol 24627  𝐿1cibl 24781  citg 24782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  sqwvfourb  43770
  Copyright terms: Public domain W3C validator