Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem58 Structured version   Visualization version   GIF version

Theorem fourierdlem58 44395
Description: The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem58.k 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem58.ass (𝜑𝐴 ⊆ (-π[,]π))
fourierdlem58.0nA (𝜑 → ¬ 0 ∈ 𝐴)
fourierdlem58.4 (𝜑𝐴 ∈ (topGen‘ran (,)))
Assertion
Ref Expression
fourierdlem58 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem58
StepHypRef Expression
1 pire 25815 . . . . . . . . . 10 π ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑠𝐴) → π ∈ ℝ)
32renegcld 11582 . . . . . . . 8 ((𝜑𝑠𝐴) → -π ∈ ℝ)
43, 2iccssred 13351 . . . . . . 7 ((𝜑𝑠𝐴) → (-π[,]π) ⊆ ℝ)
5 fourierdlem58.ass . . . . . . . 8 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3944 . . . . . . 7 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
74, 6sseldd 3945 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
8 2re 12227 . . . . . . . 8 2 ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
107rehalfcld 12400 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
1110resincld 16025 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
129, 11remulcld 11185 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
13 2cnd 12231 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
147recnd 11183 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
1514halfcld 12398 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℂ)
1615sincld 16012 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 12257 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ≠ 0)
19 eqcom 2743 . . . . . . . . . . . . . 14 (𝑠 = 0 ↔ 0 = 𝑠)
2019biimpi 215 . . . . . . . . . . . . 13 (𝑠 = 0 → 0 = 𝑠)
2120adantl 482 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 0 = 𝑠)
22 simpl 483 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 𝑠𝐴)
2321, 22eqeltrd 2838 . . . . . . . . . . 11 ((𝑠𝐴𝑠 = 0) → 0 ∈ 𝐴)
2423adantll 712 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → 0 ∈ 𝐴)
25 fourierdlem58.0nA . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ 𝐴)
2625ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → ¬ 0 ∈ 𝐴)
2724, 26pm2.65da 815 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
2827neqned 2950 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
29 fourierdlem44 44382 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
306, 28, 29syl2anc 584 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
3113, 16, 18, 30mulne0d 11807 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
327, 12, 31redivcld 11983 . . . . 5 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
33 fourierdlem58.k . . . . 5 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
3432, 33fmptd 7062 . . . 4 (𝜑𝐾:𝐴⟶ℝ)
351a1i 11 . . . . . . 7 (𝜑 → π ∈ ℝ)
3635renegcld 11582 . . . . . 6 (𝜑 → -π ∈ ℝ)
3736, 35iccssred 13351 . . . . 5 (𝜑 → (-π[,]π) ⊆ ℝ)
385, 37sstrd 3954 . . . 4 (𝜑𝐴 ⊆ ℝ)
39 dvfre 25315 . . . 4 ((𝐾:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
4034, 38, 39syl2anc 584 . . 3 (𝜑 → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
41 fourierdlem58.4 . . . . . . . . 9 (𝜑𝐴 ∈ (topGen‘ran (,)))
42 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑠𝐴𝑠) = (𝑠𝐴𝑠))
43 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
4441, 7, 12, 42, 43offval2 7637 . . . . . . . 8 (𝜑 → ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))))
4533, 44eqtr4id 2795 . . . . . . 7 (𝜑𝐾 = ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))))
4645oveq2d 7373 . . . . . 6 (𝜑 → (ℝ D 𝐾) = (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))))
47 reelprrecn 11143 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
4847a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
49 eqid 2736 . . . . . . . 8 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
5014, 49fmptd 7062 . . . . . . 7 (𝜑 → (𝑠𝐴𝑠):𝐴⟶ℂ)
5113, 16mulcld 11175 . . . . . . . . 9 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5231neneqd 2948 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
53 elsng 4600 . . . . . . . . . . 11 ((2 · (sin‘(𝑠 / 2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5412, 53syl 17 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5552, 54mtbird 324 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
5651, 55eldifd 3921 . . . . . . . 8 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
57 eqid 2736 . . . . . . . 8 (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))
5856, 57fmptd 7062 . . . . . . 7 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))):𝐴⟶(ℂ ∖ {0}))
59 eqid 2736 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6059tgioo2 24166 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6141, 60eleqtrdi 2848 . . . . . . . . 9 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t ℝ))
6248, 61dvmptidg 44148 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴𝑠)) = (𝑠𝐴 ↦ 1))
63 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
6538, 64sstrd 3954 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
66 1cnd 11150 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
67 ssid 3966 . . . . . . . . . 10 ℂ ⊆ ℂ
6867a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
6965, 66, 68constcncfg 44103 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
7062, 69eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴𝑠)) ∈ (𝐴cn→ℂ))
7138resmptd 5994 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
7271eqcomd 2742 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴))
7372oveq2d 7373 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)))
74 eqid 2736 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
75 2cnd 12231 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ∈ ℂ)
76 recn 11141 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
7776halfcld 12398 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
7877sincld 16012 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
7975, 78mulcld 11175 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
8074, 79fmpti 7060 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
8180a1i 11 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ)
82 ssid 3966 . . . . . . . . . . 11 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℝ)
8459, 60dvres 25275 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ 𝐴 ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
8564, 81, 83, 38, 84syl22anc 837 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
86 retop 24125 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
8786a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
88 uniretop 24126 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
8988isopn3 22417 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9087, 38, 89syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9141, 90mpbid 231 . . . . . . . . . . 11 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
9291reseq2d 5937 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴))
93 resmpt 5991 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
9463, 93ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
96 2cnd 12231 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ∈ ℂ)
9717a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ≠ 0)
9895, 96, 97divrec2d 11935 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (𝑠 / 2) = ((1 / 2) · 𝑠))
9998eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10076, 99syl 17 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
101100fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
102101oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
103102mpteq2ia 5208 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
10494, 103eqtr2i 2765 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
105104oveq2i 7368 . . . . . . . . . . . . 13 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
106 eqid 2736 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
107 halfcn 12368 . . . . . . . . . . . . . . . . . . 19 (1 / 2) ∈ ℂ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
109108, 95mulcld 11175 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
110109sincld 16012 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
11196, 110mulcld 11175 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
112106, 111fmpti 7060 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
113 2cn 12228 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
114 dvasinbx 44151 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
115113, 107, 114mp2an 690 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
116113, 17recidi 11886 . . . . . . . . . . . . . . . . . . . . . 22 (2 · (1 / 2)) = 1
117116a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (2 · (1 / 2)) = 1)
11899fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
119117, 118oveq12d 7375 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘(𝑠 / 2))))
120 halfcl 12378 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ → (𝑠 / 2) ∈ ℂ)
121120coscld 16013 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘(𝑠 / 2)) ∈ ℂ)
122121mulid2d 11173 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (1 · (cos‘(𝑠 / 2))) = (cos‘(𝑠 / 2)))
123119, 122eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
124123mpteq2ia 5208 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
125115, 124eqtri 2764 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
126125dmeqi 5860 . . . . . . . . . . . . . . . 16 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
127 dmmptg 6194 . . . . . . . . . . . . . . . . 17 (∀𝑠 ∈ ℂ (cos‘(𝑠 / 2)) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ)
128127, 121mprg 3070 . . . . . . . . . . . . . . . 16 dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ
129126, 128eqtri 2764 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = ℂ
13063, 129sseqtrri 3981 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
131 dvres3 25277 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
13247, 112, 67, 130, 131mp4an 691 . . . . . . . . . . . . 13 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
133125reseq1i 5933 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
134105, 132, 1333eqtri 2768 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
135134reseq1i 5933 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴)
136135a1i 11 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴))
13738resabs1d 5968 . . . . . . . . . . 11 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴))
13865resmptd 5994 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
139137, 138eqtrd 2776 . . . . . . . . . 10 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14092, 136, 1393eqtrd 2780 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14173, 85, 1403eqtrd 2780 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
142 coscn 25804 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
143142a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
14465, 68idcncfg 44104 . . . . . . . . . 10 (𝜑 → (𝑠𝐴𝑠) ∈ (𝐴cn→ℂ))
145 2cnd 12231 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
14617a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
147 eldifsn 4747 . . . . . . . . . . . 12 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
148145, 146, 147sylanbrc 583 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0}))
149 difssd 4092 . . . . . . . . . . 11 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
15065, 148, 149constcncfg 44103 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ 2) ∈ (𝐴cn→(ℂ ∖ {0})))
151144, 150divcncf 24811 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (𝑠 / 2)) ∈ (𝐴cn→ℂ))
152143, 151cncfmpt1f 24277 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ (cos‘(𝑠 / 2))) ∈ (𝐴cn→ℂ))
153141, 152eqeltrd 2838 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) ∈ (𝐴cn→ℂ))
15448, 50, 58, 70, 153dvdivcncf 44158 . . . . . 6 (𝜑 → (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))) ∈ (𝐴cn→ℂ))
15546, 154eqeltrd 2838 . . . . 5 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℂ))
156 cncff 24256 . . . . 5 ((ℝ D 𝐾) ∈ (𝐴cn→ℂ) → (ℝ D 𝐾):𝐴⟶ℂ)
157 fdm 6677 . . . . 5 ((ℝ D 𝐾):𝐴⟶ℂ → dom (ℝ D 𝐾) = 𝐴)
158155, 156, 1573syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐾) = 𝐴)
159158feq2d 6654 . . 3 (𝜑 → ((ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16040, 159mpbid 231 . 2 (𝜑 → (ℝ D 𝐾):𝐴⟶ℝ)
161 cncfcdm 24261 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐾) ∈ (𝐴cn→ℂ)) → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16264, 155, 161syl2anc 584 . 2 (𝜑 → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
163160, 162mpbird 256 1 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  cdif 3907  wss 3910  {csn 4586  {cpr 4588  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  -cneg 11386   / cdiv 11812  2c2 12208  (,)cioo 13264  [,]cicc 13267  sincsin 15946  cosccos 15947  πcpi 15949  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  intcnt 22368  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem72  44409
  Copyright terms: Public domain W3C validator