Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem58 Structured version   Visualization version   GIF version

Theorem fourierdlem58 42806
Description: The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem58.k 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem58.ass (𝜑𝐴 ⊆ (-π[,]π))
fourierdlem58.0nA (𝜑 → ¬ 0 ∈ 𝐴)
fourierdlem58.4 (𝜑𝐴 ∈ (topGen‘ran (,)))
Assertion
Ref Expression
fourierdlem58 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem58
StepHypRef Expression
1 pire 25051 . . . . . . . . . 10 π ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑠𝐴) → π ∈ ℝ)
32renegcld 11056 . . . . . . . 8 ((𝜑𝑠𝐴) → -π ∈ ℝ)
43, 2iccssred 12812 . . . . . . 7 ((𝜑𝑠𝐴) → (-π[,]π) ⊆ ℝ)
5 fourierdlem58.ass . . . . . . . 8 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3915 . . . . . . 7 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
74, 6sseldd 3916 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
8 2re 11699 . . . . . . . 8 2 ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
107rehalfcld 11872 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
1110resincld 15488 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
129, 11remulcld 10660 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
13 2cnd 11703 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
147recnd 10658 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
1514halfcld 11870 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℂ)
1615sincld 15475 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 11729 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ≠ 0)
19 eqcom 2805 . . . . . . . . . . . . . 14 (𝑠 = 0 ↔ 0 = 𝑠)
2019biimpi 219 . . . . . . . . . . . . 13 (𝑠 = 0 → 0 = 𝑠)
2120adantl 485 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 0 = 𝑠)
22 simpl 486 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 𝑠𝐴)
2321, 22eqeltrd 2890 . . . . . . . . . . 11 ((𝑠𝐴𝑠 = 0) → 0 ∈ 𝐴)
2423adantll 713 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → 0 ∈ 𝐴)
25 fourierdlem58.0nA . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ 𝐴)
2625ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → ¬ 0 ∈ 𝐴)
2724, 26pm2.65da 816 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
2827neqned 2994 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
29 fourierdlem44 42793 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
306, 28, 29syl2anc 587 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
3113, 16, 18, 30mulne0d 11281 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
327, 12, 31redivcld 11457 . . . . 5 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
33 fourierdlem58.k . . . . 5 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
3432, 33fmptd 6855 . . . 4 (𝜑𝐾:𝐴⟶ℝ)
351a1i 11 . . . . . . 7 (𝜑 → π ∈ ℝ)
3635renegcld 11056 . . . . . 6 (𝜑 → -π ∈ ℝ)
3736, 35iccssred 12812 . . . . 5 (𝜑 → (-π[,]π) ⊆ ℝ)
385, 37sstrd 3925 . . . 4 (𝜑𝐴 ⊆ ℝ)
39 dvfre 24554 . . . 4 ((𝐾:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
4034, 38, 39syl2anc 587 . . 3 (𝜑 → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
41 fourierdlem58.4 . . . . . . . . 9 (𝜑𝐴 ∈ (topGen‘ran (,)))
42 eqidd 2799 . . . . . . . . 9 (𝜑 → (𝑠𝐴𝑠) = (𝑠𝐴𝑠))
43 eqidd 2799 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
4441, 7, 12, 42, 43offval2 7406 . . . . . . . 8 (𝜑 → ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))))
4533, 44eqtr4id 2852 . . . . . . 7 (𝜑𝐾 = ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))))
4645oveq2d 7151 . . . . . 6 (𝜑 → (ℝ D 𝐾) = (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))))
47 reelprrecn 10618 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
4847a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
49 eqid 2798 . . . . . . . 8 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
5014, 49fmptd 6855 . . . . . . 7 (𝜑 → (𝑠𝐴𝑠):𝐴⟶ℂ)
5113, 16mulcld 10650 . . . . . . . . 9 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5231neneqd 2992 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
53 elsng 4539 . . . . . . . . . . 11 ((2 · (sin‘(𝑠 / 2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5412, 53syl 17 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5552, 54mtbird 328 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
5651, 55eldifd 3892 . . . . . . . 8 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
57 eqid 2798 . . . . . . . 8 (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))
5856, 57fmptd 6855 . . . . . . 7 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))):𝐴⟶(ℂ ∖ {0}))
59 eqid 2798 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6059tgioo2 23408 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6141, 60eleqtrdi 2900 . . . . . . . . 9 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t ℝ))
6248, 61dvmptidg 42559 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴𝑠)) = (𝑠𝐴 ↦ 1))
63 ax-resscn 10583 . . . . . . . . . . 11 ℝ ⊆ ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
6538, 64sstrd 3925 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
66 1cnd 10625 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
67 ssid 3937 . . . . . . . . . 10 ℂ ⊆ ℂ
6867a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
6965, 66, 68constcncfg 42514 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
7062, 69eqeltrd 2890 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴𝑠)) ∈ (𝐴cn→ℂ))
7138resmptd 5875 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
7271eqcomd 2804 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴))
7372oveq2d 7151 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)))
74 eqid 2798 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
75 2cnd 11703 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ∈ ℂ)
76 recn 10616 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
7776halfcld 11870 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
7877sincld 15475 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
7975, 78mulcld 10650 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
8074, 79fmpti 6853 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
8180a1i 11 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ)
82 ssid 3937 . . . . . . . . . . 11 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℝ)
8459, 60dvres 24514 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ 𝐴 ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
8564, 81, 83, 38, 84syl22anc 837 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
86 retop 23367 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
8786a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
88 uniretop 23368 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
8988isopn3 21671 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9087, 38, 89syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9141, 90mpbid 235 . . . . . . . . . . 11 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
9291reseq2d 5818 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴))
93 resmpt 5872 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
9463, 93ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
96 2cnd 11703 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ∈ ℂ)
9717a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ≠ 0)
9895, 96, 97divrec2d 11409 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (𝑠 / 2) = ((1 / 2) · 𝑠))
9998eqcomd 2804 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10076, 99syl 17 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
101100fveq2d 6649 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
102101oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
103102mpteq2ia 5121 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
10494, 103eqtr2i 2822 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
105104oveq2i 7146 . . . . . . . . . . . . 13 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
106 eqid 2798 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
107 halfcn 11840 . . . . . . . . . . . . . . . . . . 19 (1 / 2) ∈ ℂ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
109108, 95mulcld 10650 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
110109sincld 15475 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
11196, 110mulcld 10650 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
112106, 111fmpti 6853 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
113 2cn 11700 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
114 dvasinbx 42562 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
115113, 107, 114mp2an 691 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
116113, 17recidi 11360 . . . . . . . . . . . . . . . . . . . . . 22 (2 · (1 / 2)) = 1
117116a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (2 · (1 / 2)) = 1)
11899fveq2d 6649 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
119117, 118oveq12d 7153 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘(𝑠 / 2))))
120 halfcl 11850 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ → (𝑠 / 2) ∈ ℂ)
121120coscld 15476 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘(𝑠 / 2)) ∈ ℂ)
122121mulid2d 10648 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (1 · (cos‘(𝑠 / 2))) = (cos‘(𝑠 / 2)))
123119, 122eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
124123mpteq2ia 5121 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
125115, 124eqtri 2821 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
126125dmeqi 5737 . . . . . . . . . . . . . . . 16 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
127 dmmptg 6063 . . . . . . . . . . . . . . . . 17 (∀𝑠 ∈ ℂ (cos‘(𝑠 / 2)) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ)
128127, 121mprg 3120 . . . . . . . . . . . . . . . 16 dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ
129126, 128eqtri 2821 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = ℂ
13063, 129sseqtrri 3952 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
131 dvres3 24516 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
13247, 112, 67, 130, 131mp4an 692 . . . . . . . . . . . . 13 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
133125reseq1i 5814 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
134105, 132, 1333eqtri 2825 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
135134reseq1i 5814 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴)
136135a1i 11 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴))
13738resabs1d 5849 . . . . . . . . . . 11 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴))
13865resmptd 5875 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
139137, 138eqtrd 2833 . . . . . . . . . 10 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14092, 136, 1393eqtrd 2837 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14173, 85, 1403eqtrd 2837 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
142 coscn 25040 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
143142a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
14465, 68idcncfg 42515 . . . . . . . . . 10 (𝜑 → (𝑠𝐴𝑠) ∈ (𝐴cn→ℂ))
145 2cnd 11703 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
14617a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
147 eldifsn 4680 . . . . . . . . . . . 12 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
148145, 146, 147sylanbrc 586 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0}))
149 difssd 4060 . . . . . . . . . . 11 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
15065, 148, 149constcncfg 42514 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ 2) ∈ (𝐴cn→(ℂ ∖ {0})))
151144, 150divcncf 24051 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (𝑠 / 2)) ∈ (𝐴cn→ℂ))
152143, 151cncfmpt1f 23519 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ (cos‘(𝑠 / 2))) ∈ (𝐴cn→ℂ))
153141, 152eqeltrd 2890 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) ∈ (𝐴cn→ℂ))
15448, 50, 58, 70, 153dvdivcncf 42569 . . . . . 6 (𝜑 → (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))) ∈ (𝐴cn→ℂ))
15546, 154eqeltrd 2890 . . . . 5 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℂ))
156 cncff 23498 . . . . 5 ((ℝ D 𝐾) ∈ (𝐴cn→ℂ) → (ℝ D 𝐾):𝐴⟶ℂ)
157 fdm 6495 . . . . 5 ((ℝ D 𝐾):𝐴⟶ℂ → dom (ℝ D 𝐾) = 𝐴)
158155, 156, 1573syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐾) = 𝐴)
159158feq2d 6473 . . 3 (𝜑 → ((ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16040, 159mpbid 235 . 2 (𝜑 → (ℝ D 𝐾):𝐴⟶ℝ)
161 cncffvrn 23503 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐾) ∈ (𝐴cn→ℂ)) → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16264, 155, 161syl2anc 587 . 2 (𝜑 → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
163160, 162mpbird 260 1 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  cdif 3878  wss 3881  {csn 4525  {cpr 4527  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  -cneg 10860   / cdiv 11286  2c2 11680  (,)cioo 12726  [,]cicc 12729  sincsin 15409  cosccos 15410  πcpi 15412  t crest 16686  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  Topctop 21498  intcnt 21622  cnccncf 23481   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  fourierdlem72  42820
  Copyright terms: Public domain W3C validator