Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem58 Structured version   Visualization version   GIF version

Theorem fourierdlem58 41174
Description: The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem58.k 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem58.ass (𝜑𝐴 ⊆ (-π[,]π))
fourierdlem58.0nA (𝜑 → ¬ 0 ∈ 𝐴)
fourierdlem58.4 (𝜑𝐴 ∈ (topGen‘ran (,)))
Assertion
Ref Expression
fourierdlem58 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem58
StepHypRef Expression
1 pire 24609 . . . . . . . . . 10 π ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑠𝐴) → π ∈ ℝ)
32renegcld 10780 . . . . . . . 8 ((𝜑𝑠𝐴) → -π ∈ ℝ)
43, 2iccssred 40525 . . . . . . 7 ((𝜑𝑠𝐴) → (-π[,]π) ⊆ ℝ)
5 fourierdlem58.ass . . . . . . . 8 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3826 . . . . . . 7 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
74, 6sseldd 3827 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
8 2re 11424 . . . . . . . 8 2 ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
107rehalfcld 11604 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
1110resincld 15244 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
129, 11remulcld 10386 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
13 2cnd 11428 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
147recnd 10384 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
1514halfcld 11602 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℂ)
1615sincld 15231 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 11461 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ≠ 0)
19 eqcom 2831 . . . . . . . . . . . . . 14 (𝑠 = 0 ↔ 0 = 𝑠)
2019biimpi 208 . . . . . . . . . . . . 13 (𝑠 = 0 → 0 = 𝑠)
2120adantl 475 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 0 = 𝑠)
22 simpl 476 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 𝑠𝐴)
2321, 22eqeltrd 2905 . . . . . . . . . . 11 ((𝑠𝐴𝑠 = 0) → 0 ∈ 𝐴)
2423adantll 707 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → 0 ∈ 𝐴)
25 fourierdlem58.0nA . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ 𝐴)
2625ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → ¬ 0 ∈ 𝐴)
2724, 26pm2.65da 853 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
2827neqned 3005 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
29 fourierdlem44 41161 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
306, 28, 29syl2anc 581 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
3113, 16, 18, 30mulne0d 11003 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
327, 12, 31redivcld 11178 . . . . 5 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
33 fourierdlem58.k . . . . 5 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
3432, 33fmptd 6632 . . . 4 (𝜑𝐾:𝐴⟶ℝ)
351a1i 11 . . . . . . 7 (𝜑 → π ∈ ℝ)
3635renegcld 10780 . . . . . 6 (𝜑 → -π ∈ ℝ)
3736, 35iccssred 40525 . . . . 5 (𝜑 → (-π[,]π) ⊆ ℝ)
385, 37sstrd 3836 . . . 4 (𝜑𝐴 ⊆ ℝ)
39 dvfre 24112 . . . 4 ((𝐾:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
4034, 38, 39syl2anc 581 . . 3 (𝜑 → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
41 fourierdlem58.4 . . . . . . . . 9 (𝜑𝐴 ∈ (topGen‘ran (,)))
42 eqidd 2825 . . . . . . . . 9 (𝜑 → (𝑠𝐴𝑠) = (𝑠𝐴𝑠))
43 eqidd 2825 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
4441, 7, 12, 42, 43offval2 7173 . . . . . . . 8 (𝜑 → ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))))
4544, 33syl6reqr 2879 . . . . . . 7 (𝜑𝐾 = ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))))
4645oveq2d 6920 . . . . . 6 (𝜑 → (ℝ D 𝐾) = (ℝ D ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))))
47 reelprrecn 10343 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
4847a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
49 eqid 2824 . . . . . . . 8 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
5014, 49fmptd 6632 . . . . . . 7 (𝜑 → (𝑠𝐴𝑠):𝐴⟶ℂ)
5113, 16mulcld 10376 . . . . . . . . 9 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5231neneqd 3003 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
53 elsng 4410 . . . . . . . . . . 11 ((2 · (sin‘(𝑠 / 2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5412, 53syl 17 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5552, 54mtbird 317 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
5651, 55eldifd 3808 . . . . . . . 8 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
57 eqid 2824 . . . . . . . 8 (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))
5856, 57fmptd 6632 . . . . . . 7 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))):𝐴⟶(ℂ ∖ {0}))
59 eqid 2824 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6059tgioo2 22975 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6141, 60syl6eleq 2915 . . . . . . . . 9 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t ℝ))
6248, 61dvmptidg 40925 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴𝑠)) = (𝑠𝐴 ↦ 1))
63 ax-resscn 10308 . . . . . . . . . . 11 ℝ ⊆ ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
6538, 64sstrd 3836 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
66 1cnd 10350 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
67 ssid 3847 . . . . . . . . . 10 ℂ ⊆ ℂ
6867a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
6965, 66, 68constcncfg 40878 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
7062, 69eqeltrd 2905 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴𝑠)) ∈ (𝐴cn→ℂ))
7138resmptd 5688 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
7271eqcomd 2830 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴))
7372oveq2d 6920 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)))
74 eqid 2824 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
75 2cnd 11428 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ∈ ℂ)
76 recn 10341 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
7776halfcld 11602 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
7877sincld 15231 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
7975, 78mulcld 10376 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
8074, 79fmpti 6630 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
8180a1i 11 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ)
82 ssid 3847 . . . . . . . . . . 11 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℝ)
8459, 60dvres 24073 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ 𝐴 ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
8564, 81, 83, 38, 84syl22anc 874 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
86 retop 22934 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
8786a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
88 uniretop 22935 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
8988isopn3 21240 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9087, 38, 89syl2anc 581 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9141, 90mpbid 224 . . . . . . . . . . 11 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
9291reseq2d 5628 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴))
93 resmpt 5685 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
9463, 93ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
96 2cnd 11428 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ∈ ℂ)
9717a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ≠ 0)
9895, 96, 97divrec2d 11130 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (𝑠 / 2) = ((1 / 2) · 𝑠))
9998eqcomd 2830 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10076, 99syl 17 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
101100fveq2d 6436 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
102101oveq2d 6920 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
103102mpteq2ia 4962 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
10494, 103eqtr2i 2849 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
105104oveq2i 6915 . . . . . . . . . . . . 13 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
106 eqid 2824 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
107 halfcn 11572 . . . . . . . . . . . . . . . . . . 19 (1 / 2) ∈ ℂ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
109108, 95mulcld 10376 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
110109sincld 15231 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
11196, 110mulcld 10376 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
112106, 111fmpti 6630 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
113 2cn 11425 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
114 dvasinbx 40929 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
115113, 107, 114mp2an 685 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
116113, 17recidi 11081 . . . . . . . . . . . . . . . . . . . . . 22 (2 · (1 / 2)) = 1
117116a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (2 · (1 / 2)) = 1)
11899fveq2d 6436 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
119117, 118oveq12d 6922 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘(𝑠 / 2))))
120 halfcl 11582 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ → (𝑠 / 2) ∈ ℂ)
121120coscld 15232 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘(𝑠 / 2)) ∈ ℂ)
122121mulid2d 10374 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (1 · (cos‘(𝑠 / 2))) = (cos‘(𝑠 / 2)))
123119, 122eqtrd 2860 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
124123mpteq2ia 4962 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
125115, 124eqtri 2848 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
126125dmeqi 5556 . . . . . . . . . . . . . . . 16 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
127 dmmptg 5872 . . . . . . . . . . . . . . . . 17 (∀𝑠 ∈ ℂ (cos‘(𝑠 / 2)) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ)
128127, 121mprg 3134 . . . . . . . . . . . . . . . 16 dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ
129126, 128eqtri 2848 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = ℂ
13063, 129sseqtr4i 3862 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
131 dvres3 24075 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
13247, 112, 67, 130, 131mp4an 686 . . . . . . . . . . . . 13 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
133125reseq1i 5624 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
134105, 132, 1333eqtri 2852 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
135134reseq1i 5624 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴)
136135a1i 11 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴))
13738resabs1d 5663 . . . . . . . . . . 11 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴))
13865resmptd 5688 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
139137, 138eqtrd 2860 . . . . . . . . . 10 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14092, 136, 1393eqtrd 2864 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14173, 85, 1403eqtrd 2864 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
142 coscn 24597 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
143142a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
14465, 68idcncfg 40879 . . . . . . . . . 10 (𝜑 → (𝑠𝐴𝑠) ∈ (𝐴cn→ℂ))
145 2cnd 11428 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
14617a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
147 eldifsn 4535 . . . . . . . . . . . 12 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
148145, 146, 147sylanbrc 580 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0}))
149 difssd 3964 . . . . . . . . . . 11 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
15065, 148, 149constcncfg 40878 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ 2) ∈ (𝐴cn→(ℂ ∖ {0})))
151144, 150divcncf 23612 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (𝑠 / 2)) ∈ (𝐴cn→ℂ))
152143, 151cncfmpt1f 23085 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ (cos‘(𝑠 / 2))) ∈ (𝐴cn→ℂ))
153141, 152eqeltrd 2905 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) ∈ (𝐴cn→ℂ))
15448, 50, 58, 70, 153dvdivcncf 40936 . . . . . 6 (𝜑 → (ℝ D ((𝑠𝐴𝑠) ∘𝑓 / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))) ∈ (𝐴cn→ℂ))
15546, 154eqeltrd 2905 . . . . 5 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℂ))
156 cncff 23065 . . . . 5 ((ℝ D 𝐾) ∈ (𝐴cn→ℂ) → (ℝ D 𝐾):𝐴⟶ℂ)
157 fdm 6285 . . . . 5 ((ℝ D 𝐾):𝐴⟶ℂ → dom (ℝ D 𝐾) = 𝐴)
158155, 156, 1573syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐾) = 𝐴)
159158feq2d 6263 . . 3 (𝜑 → ((ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16040, 159mpbid 224 . 2 (𝜑 → (ℝ D 𝐾):𝐴⟶ℝ)
161 cncffvrn 23070 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐾) ∈ (𝐴cn→ℂ)) → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16264, 155, 161syl2anc 581 . 2 (𝜑 → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
163160, 162mpbird 249 1 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 2998  cdif 3794  wss 3797  {csn 4396  {cpr 4398  cmpt 4951  dom cdm 5341  ran crn 5342  cres 5343  wf 6118  cfv 6122  (class class class)co 6904  𝑓 cof 7154  cc 10249  cr 10250  0cc0 10251  1c1 10252   · cmul 10256  -cneg 10585   / cdiv 11008  2c2 11405  (,)cioo 12462  [,]cicc 12465  sincsin 15165  cosccos 15166  πcpi 15168  t crest 16433  TopOpenctopn 16434  topGenctg 16450  fldccnfld 20105  Topctop 21067  intcnt 21191  cnccncf 23048   D cdv 24025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329  ax-addf 10330  ax-mulf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-iin 4742  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-supp 7559  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-er 8008  df-map 8123  df-pm 8124  df-ixp 8175  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-fsupp 8544  df-fi 8585  df-sup 8616  df-inf 8617  df-oi 8683  df-card 9077  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-q 12071  df-rp 12112  df-xneg 12231  df-xadd 12232  df-xmul 12233  df-ioo 12466  df-ioc 12467  df-ico 12468  df-icc 12469  df-fz 12619  df-fzo 12760  df-fl 12887  df-mod 12963  df-seq 13095  df-exp 13154  df-fac 13353  df-bc 13382  df-hash 13410  df-shft 14183  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-limsup 14578  df-clim 14595  df-rlim 14596  df-sum 14793  df-ef 15169  df-sin 15171  df-cos 15172  df-pi 15174  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-starv 16319  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-unif 16327  df-hom 16328  df-cco 16329  df-rest 16435  df-topn 16436  df-0g 16454  df-gsum 16455  df-topgen 16456  df-pt 16457  df-prds 16460  df-xrs 16514  df-qtop 16519  df-imas 16520  df-xps 16522  df-mre 16598  df-mrc 16599  df-acs 16601  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-submnd 17688  df-mulg 17894  df-cntz 18099  df-cmn 18547  df-psmet 20097  df-xmet 20098  df-met 20099  df-bl 20100  df-mopn 20101  df-fbas 20102  df-fg 20103  df-cnfld 20106  df-top 21068  df-topon 21085  df-topsp 21107  df-bases 21120  df-cld 21193  df-ntr 21194  df-cls 21195  df-nei 21272  df-lp 21310  df-perf 21311  df-cn 21401  df-cnp 21402  df-t1 21488  df-haus 21489  df-tx 21735  df-hmeo 21928  df-fil 22019  df-fm 22111  df-flim 22112  df-flf 22113  df-xms 22494  df-ms 22495  df-tms 22496  df-cncf 23050  df-limc 24028  df-dv 24029
This theorem is referenced by:  fourierdlem72  41188
  Copyright terms: Public domain W3C validator