Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem58 Structured version   Visualization version   GIF version

Theorem fourierdlem58 44753
Description: The derivative of 𝐾 is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem58.k 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
fourierdlem58.ass (𝜑𝐴 ⊆ (-π[,]π))
fourierdlem58.0nA (𝜑 → ¬ 0 ∈ 𝐴)
fourierdlem58.4 (𝜑𝐴 ∈ (topGen‘ran (,)))
Assertion
Ref Expression
fourierdlem58 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Distinct variable groups:   𝐴,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem58
StepHypRef Expression
1 pire 25937 . . . . . . . . . 10 π ∈ ℝ
21a1i 11 . . . . . . . . 9 ((𝜑𝑠𝐴) → π ∈ ℝ)
32renegcld 11628 . . . . . . . 8 ((𝜑𝑠𝐴) → -π ∈ ℝ)
43, 2iccssred 13398 . . . . . . 7 ((𝜑𝑠𝐴) → (-π[,]π) ⊆ ℝ)
5 fourierdlem58.ass . . . . . . . 8 (𝜑𝐴 ⊆ (-π[,]π))
65sselda 3980 . . . . . . 7 ((𝜑𝑠𝐴) → 𝑠 ∈ (-π[,]π))
74, 6sseldd 3981 . . . . . 6 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
8 2re 12273 . . . . . . . 8 2 ∈ ℝ
98a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℝ)
107rehalfcld 12446 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℝ)
1110resincld 16073 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℝ)
129, 11remulcld 11231 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
13 2cnd 12277 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ∈ ℂ)
147recnd 11229 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
1514halfcld 12444 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑠 / 2) ∈ ℂ)
1615sincld 16060 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 12303 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝜑𝑠𝐴) → 2 ≠ 0)
19 eqcom 2740 . . . . . . . . . . . . . 14 (𝑠 = 0 ↔ 0 = 𝑠)
2019biimpi 215 . . . . . . . . . . . . 13 (𝑠 = 0 → 0 = 𝑠)
2120adantl 483 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 0 = 𝑠)
22 simpl 484 . . . . . . . . . . . 12 ((𝑠𝐴𝑠 = 0) → 𝑠𝐴)
2321, 22eqeltrd 2834 . . . . . . . . . . 11 ((𝑠𝐴𝑠 = 0) → 0 ∈ 𝐴)
2423adantll 713 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → 0 ∈ 𝐴)
25 fourierdlem58.0nA . . . . . . . . . . 11 (𝜑 → ¬ 0 ∈ 𝐴)
2625ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑠𝐴) ∧ 𝑠 = 0) → ¬ 0 ∈ 𝐴)
2724, 26pm2.65da 816 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ 𝑠 = 0)
2827neqned 2948 . . . . . . . 8 ((𝜑𝑠𝐴) → 𝑠 ≠ 0)
29 fourierdlem44 44740 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
306, 28, 29syl2anc 585 . . . . . . 7 ((𝜑𝑠𝐴) → (sin‘(𝑠 / 2)) ≠ 0)
3113, 16, 18, 30mulne0d 11853 . . . . . 6 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
327, 12, 31redivcld 12029 . . . . 5 ((𝜑𝑠𝐴) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
33 fourierdlem58.k . . . . 5 𝐾 = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
3432, 33fmptd 7101 . . . 4 (𝜑𝐾:𝐴⟶ℝ)
351a1i 11 . . . . . . 7 (𝜑 → π ∈ ℝ)
3635renegcld 11628 . . . . . 6 (𝜑 → -π ∈ ℝ)
3736, 35iccssred 13398 . . . . 5 (𝜑 → (-π[,]π) ⊆ ℝ)
385, 37sstrd 3990 . . . 4 (𝜑𝐴 ⊆ ℝ)
39 dvfre 25437 . . . 4 ((𝐾:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
4034, 38, 39syl2anc 585 . . 3 (𝜑 → (ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ)
41 fourierdlem58.4 . . . . . . . . 9 (𝜑𝐴 ∈ (topGen‘ran (,)))
42 eqidd 2734 . . . . . . . . 9 (𝜑 → (𝑠𝐴𝑠) = (𝑠𝐴𝑠))
43 eqidd 2734 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
4441, 7, 12, 42, 43offval2 7677 . . . . . . . 8 (𝜑 → ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))))
4533, 44eqtr4id 2792 . . . . . . 7 (𝜑𝐾 = ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))))
4645oveq2d 7412 . . . . . 6 (𝜑 → (ℝ D 𝐾) = (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))))
47 reelprrecn 11189 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
4847a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
49 eqid 2733 . . . . . . . 8 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
5014, 49fmptd 7101 . . . . . . 7 (𝜑 → (𝑠𝐴𝑠):𝐴⟶ℂ)
5113, 16mulcld 11221 . . . . . . . . 9 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
5231neneqd 2946 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
53 elsng 4638 . . . . . . . . . . 11 ((2 · (sin‘(𝑠 / 2))) ∈ ℝ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5412, 53syl 17 . . . . . . . . . 10 ((𝜑𝑠𝐴) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
5552, 54mtbird 325 . . . . . . . . 9 ((𝜑𝑠𝐴) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
5651, 55eldifd 3957 . . . . . . . 8 ((𝜑𝑠𝐴) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
57 eqid 2733 . . . . . . . 8 (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))
5856, 57fmptd 7101 . . . . . . 7 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))):𝐴⟶(ℂ ∖ {0}))
59 eqid 2733 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
6059tgioo2 24288 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6141, 60eleqtrdi 2844 . . . . . . . . 9 (𝜑𝐴 ∈ ((TopOpen‘ℂfld) ↾t ℝ))
6248, 61dvmptidg 44506 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴𝑠)) = (𝑠𝐴 ↦ 1))
63 ax-resscn 11154 . . . . . . . . . . 11 ℝ ⊆ ℂ
6463a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
6538, 64sstrd 3990 . . . . . . . . 9 (𝜑𝐴 ⊆ ℂ)
66 1cnd 11196 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
67 ssid 4002 . . . . . . . . . 10 ℂ ⊆ ℂ
6867a1i 11 . . . . . . . . 9 (𝜑 → ℂ ⊆ ℂ)
6965, 66, 68constcncfg 44461 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ 1) ∈ (𝐴cn→ℂ))
7062, 69eqeltrd 2834 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴𝑠)) ∈ (𝐴cn→ℂ))
7138resmptd 6033 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴) = (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))
7271eqcomd 2739 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴))
7372oveq2d 7412 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)))
74 eqid 2733 . . . . . . . . . . . 12 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
75 2cnd 12277 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 2 ∈ ℂ)
76 recn 11187 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
7776halfcld 12444 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
7877sincld 16060 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → (sin‘(𝑠 / 2)) ∈ ℂ)
7975, 78mulcld 11221 . . . . . . . . . . . 12 (𝑠 ∈ ℝ → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
8074, 79fmpti 7099 . . . . . . . . . . 11 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ
8180a1i 11 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ)
82 ssid 4002 . . . . . . . . . . 11 ℝ ⊆ ℝ
8382a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℝ)
8459, 60dvres 25397 . . . . . . . . . 10 (((ℝ ⊆ ℂ ∧ (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ 𝐴 ⊆ ℝ)) → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
8564, 81, 83, 38, 84syl22anc 838 . . . . . . . . 9 (𝜑 → (ℝ D ((𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) ↾ 𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)))
86 retop 24247 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
8786a1i 11 . . . . . . . . . . . . 13 (𝜑 → (topGen‘ran (,)) ∈ Top)
88 uniretop 24248 . . . . . . . . . . . . . 14 ℝ = (topGen‘ran (,))
8988isopn3 22539 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ 𝐴 ⊆ ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9087, 38, 89syl2anc 585 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴))
9141, 90mpbid 231 . . . . . . . . . . 11 (𝜑 → ((int‘(topGen‘ran (,)))‘𝐴) = 𝐴)
9291reseq2d 5976 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴))
93 resmpt 6030 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
9463, 93ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
95 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 𝑠 ∈ ℂ)
96 2cnd 12277 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ∈ ℂ)
9717a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → 2 ≠ 0)
9895, 96, 97divrec2d 11981 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (𝑠 / 2) = ((1 / 2) · 𝑠))
9998eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) = (𝑠 / 2))
10076, 99syl 17 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℝ → ((1 / 2) · 𝑠) = (𝑠 / 2))
101100fveq2d 6885 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℝ → (sin‘((1 / 2) · 𝑠)) = (sin‘(𝑠 / 2)))
102101oveq2d 7412 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℝ → (2 · (sin‘((1 / 2) · 𝑠))) = (2 · (sin‘(𝑠 / 2))))
103102mpteq2ia 5247 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))
10494, 103eqtr2i 2762 . . . . . . . . . . . . . 14 (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2)))) = ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)
105104oveq2i 7407 . . . . . . . . . . . . 13 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ))
106 eqid 2733 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))
107 halfcn 12414 . . . . . . . . . . . . . . . . . . 19 (1 / 2) ∈ ℂ
108107a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ → (1 / 2) ∈ ℂ)
109108, 95mulcld 11221 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ → ((1 / 2) · 𝑠) ∈ ℂ)
110109sincld 16060 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℂ → (sin‘((1 / 2) · 𝑠)) ∈ ℂ)
11196, 110mulcld 11221 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑠))) ∈ ℂ)
112106, 111fmpti 7099 . . . . . . . . . . . . . 14 (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ
113 2cn 12274 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℂ
114 dvasinbx 44509 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))))
115113, 107, 114mp2an 691 . . . . . . . . . . . . . . . . . 18 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))))
116113, 17recidi 11932 . . . . . . . . . . . . . . . . . . . . . 22 (2 · (1 / 2)) = 1
117116a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (2 · (1 / 2)) = 1)
11899fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘((1 / 2) · 𝑠)) = (cos‘(𝑠 / 2)))
119117, 118oveq12d 7414 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (1 · (cos‘(𝑠 / 2))))
120 halfcl 12424 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ → (𝑠 / 2) ∈ ℂ)
121120coscld 16061 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ → (cos‘(𝑠 / 2)) ∈ ℂ)
122121mullidd 11219 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℂ → (1 · (cos‘(𝑠 / 2))) = (cos‘(𝑠 / 2)))
123119, 122eqtrd 2773 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠))) = (cos‘(𝑠 / 2)))
124123mpteq2ia 5247 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑠)))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
125115, 124eqtri 2761 . . . . . . . . . . . . . . . . 17 (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
126125dmeqi 5899 . . . . . . . . . . . . . . . 16 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2)))
127 dmmptg 6233 . . . . . . . . . . . . . . . . 17 (∀𝑠 ∈ ℂ (cos‘(𝑠 / 2)) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ)
128127, 121mprg 3068 . . . . . . . . . . . . . . . 16 dom (𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) = ℂ
129126, 128eqtri 2761 . . . . . . . . . . . . . . 15 dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) = ℂ
13063, 129sseqtrri 4017 . . . . . . . . . . . . . 14 ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))))
131 dvres3 25399 . . . . . . . . . . . . . 14 (((ℝ ∈ {ℝ, ℂ} ∧ (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))):ℂ⟶ℂ) ∧ (ℂ ⊆ ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ))
13247, 112, 67, 130, 131mp4an 692 . . . . . . . . . . . . 13 (ℝ D ((𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠)))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ)
133125reseq1i 5972 . . . . . . . . . . . . 13 ((ℂ D (𝑠 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑠))))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
134105, 132, 1333eqtri 2765 . . . . . . . . . . . 12 (ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ)
135134reseq1i 5972 . . . . . . . . . . 11 ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴)
136135a1i 11 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ 𝐴) = (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴))
13738resabs1d 6007 . . . . . . . . . . 11 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴))
13865resmptd 6033 . . . . . . . . . . 11 (𝜑 → ((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
139137, 138eqtrd 2773 . . . . . . . . . 10 (𝜑 → (((𝑠 ∈ ℂ ↦ (cos‘(𝑠 / 2))) ↾ ℝ) ↾ 𝐴) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14092, 136, 1393eqtrd 2777 . . . . . . . . 9 (𝜑 → ((ℝ D (𝑠 ∈ ℝ ↦ (2 · (sin‘(𝑠 / 2))))) ↾ ((int‘(topGen‘ran (,)))‘𝐴)) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
14173, 85, 1403eqtrd 2777 . . . . . . . 8 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠𝐴 ↦ (cos‘(𝑠 / 2))))
142 coscn 25926 . . . . . . . . . 10 cos ∈ (ℂ–cn→ℂ)
143142a1i 11 . . . . . . . . 9 (𝜑 → cos ∈ (ℂ–cn→ℂ))
14465, 68idcncfg 44462 . . . . . . . . . 10 (𝜑 → (𝑠𝐴𝑠) ∈ (𝐴cn→ℂ))
145 2cnd 12277 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
14617a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
147 eldifsn 4786 . . . . . . . . . . . 12 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
148145, 146, 147sylanbrc 584 . . . . . . . . . . 11 (𝜑 → 2 ∈ (ℂ ∖ {0}))
149 difssd 4130 . . . . . . . . . . 11 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
15065, 148, 149constcncfg 44461 . . . . . . . . . 10 (𝜑 → (𝑠𝐴 ↦ 2) ∈ (𝐴cn→(ℂ ∖ {0})))
151144, 150divcncf 24933 . . . . . . . . 9 (𝜑 → (𝑠𝐴 ↦ (𝑠 / 2)) ∈ (𝐴cn→ℂ))
152143, 151cncfmpt1f 24399 . . . . . . . 8 (𝜑 → (𝑠𝐴 ↦ (cos‘(𝑠 / 2))) ∈ (𝐴cn→ℂ))
153141, 152eqeltrd 2834 . . . . . . 7 (𝜑 → (ℝ D (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2))))) ∈ (𝐴cn→ℂ))
15448, 50, 58, 70, 153dvdivcncf 44516 . . . . . 6 (𝜑 → (ℝ D ((𝑠𝐴𝑠) ∘f / (𝑠𝐴 ↦ (2 · (sin‘(𝑠 / 2)))))) ∈ (𝐴cn→ℂ))
15546, 154eqeltrd 2834 . . . . 5 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℂ))
156 cncff 24378 . . . . 5 ((ℝ D 𝐾) ∈ (𝐴cn→ℂ) → (ℝ D 𝐾):𝐴⟶ℂ)
157 fdm 6716 . . . . 5 ((ℝ D 𝐾):𝐴⟶ℂ → dom (ℝ D 𝐾) = 𝐴)
158155, 156, 1573syl 18 . . . 4 (𝜑 → dom (ℝ D 𝐾) = 𝐴)
159158feq2d 6693 . . 3 (𝜑 → ((ℝ D 𝐾):dom (ℝ D 𝐾)⟶ℝ ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16040, 159mpbid 231 . 2 (𝜑 → (ℝ D 𝐾):𝐴⟶ℝ)
161 cncfcdm 24383 . . 3 ((ℝ ⊆ ℂ ∧ (ℝ D 𝐾) ∈ (𝐴cn→ℂ)) → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
16264, 155, 161syl2anc 585 . 2 (𝜑 → ((ℝ D 𝐾) ∈ (𝐴cn→ℝ) ↔ (ℝ D 𝐾):𝐴⟶ℝ))
163160, 162mpbird 257 1 (𝜑 → (ℝ D 𝐾) ∈ (𝐴cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  cdif 3943  wss 3946  {csn 4624  {cpr 4626  cmpt 5227  dom cdm 5672  ran crn 5673  cres 5674  wf 6531  cfv 6535  (class class class)co 7396  f cof 7655  cc 11095  cr 11096  0cc0 11097  1c1 11098   · cmul 11102  -cneg 11432   / cdiv 11858  2c2 12254  (,)cioo 13311  [,]cicc 13314  sincsin 15994  cosccos 15995  πcpi 15997  t crest 17353  TopOpenctopn 17354  topGenctg 17370  fldccnfld 20918  Topctop 22364  intcnt 22490  cnccncf 24361   D cdv 25349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-inf2 9623  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-iin 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-isom 6544  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-of 7657  df-om 7843  df-1st 7962  df-2nd 7963  df-supp 8134  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-2o 8454  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-fsupp 9350  df-fi 9393  df-sup 9424  df-inf 9425  df-oi 9492  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13315  df-ioc 13316  df-ico 13317  df-icc 13318  df-fz 13472  df-fzo 13615  df-fl 13744  df-mod 13822  df-seq 13954  df-exp 14015  df-fac 14221  df-bc 14250  df-hash 14278  df-shft 15001  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-limsup 15402  df-clim 15419  df-rlim 15420  df-sum 15620  df-ef 15998  df-sin 16000  df-cos 16001  df-pi 16003  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-rest 17355  df-topn 17356  df-0g 17374  df-gsum 17375  df-topgen 17376  df-pt 17377  df-prds 17380  df-xrs 17435  df-qtop 17440  df-imas 17441  df-xps 17443  df-mre 17517  df-mrc 17518  df-acs 17520  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-mulg 18936  df-cntz 19166  df-cmn 19634  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-fbas 20915  df-fg 20916  df-cnfld 20919  df-top 22365  df-topon 22382  df-topsp 22404  df-bases 22418  df-cld 22492  df-ntr 22493  df-cls 22494  df-nei 22571  df-lp 22609  df-perf 22610  df-cn 22700  df-cnp 22701  df-t1 22787  df-haus 22788  df-tx 23035  df-hmeo 23228  df-fil 23319  df-fm 23411  df-flim 23412  df-flf 23413  df-xms 23795  df-ms 23796  df-tms 23797  df-cncf 24363  df-limc 25352  df-dv 25353
This theorem is referenced by:  fourierdlem72  44767
  Copyright terms: Public domain W3C validator