![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnbl | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnbl.i | β’ (π β πΌ β Fin) |
qndenserrnbl.x | β’ (π β π β (β βm πΌ)) |
qndenserrnbl.d | β’ π· = (distβ(β^βπΌ)) |
qndenserrnbl.e | β’ (π β πΈ β β+) |
Ref | Expression |
---|---|
qndenserrnbl | β’ (π β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5297 | . . . . . 6 β’ β β V | |
2 | 1 | snid 4656 | . . . . 5 β’ β β {β } |
3 | 2 | a1i 11 | . . . 4 β’ ((π β§ πΌ = β ) β β β {β }) |
4 | oveq2 7409 | . . . . . 6 β’ (πΌ = β β (β βm πΌ) = (β βm β )) | |
5 | qex 12942 | . . . . . . . 8 β’ β β V | |
6 | mapdm0 8832 | . . . . . . . 8 β’ (β β V β (β βm β ) = {β }) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 β’ (β βm β ) = {β } |
8 | 7 | a1i 11 | . . . . . 6 β’ (πΌ = β β (β βm β ) = {β }) |
9 | 4, 8 | eqtr2d 2765 | . . . . 5 β’ (πΌ = β β {β } = (β βm πΌ)) |
10 | 9 | adantl 481 | . . . 4 β’ ((π β§ πΌ = β ) β {β } = (β βm πΌ)) |
11 | 3, 10 | eleqtrd 2827 | . . 3 β’ ((π β§ πΌ = β ) β β β (β βm πΌ)) |
12 | qndenserrnbl.i | . . . . . . . 8 β’ (π β πΌ β Fin) | |
13 | qndenserrnbl.d | . . . . . . . . 9 β’ π· = (distβ(β^βπΌ)) | |
14 | 13 | rrxmetfi 25262 | . . . . . . . 8 β’ (πΌ β Fin β π· β (Metβ(β βm πΌ))) |
15 | 12, 14 | syl 17 | . . . . . . 7 β’ (π β π· β (Metβ(β βm πΌ))) |
16 | metxmet 24162 | . . . . . . 7 β’ (π· β (Metβ(β βm πΌ)) β π· β (βMetβ(β βm πΌ))) | |
17 | 15, 16 | syl 17 | . . . . . 6 β’ (π β π· β (βMetβ(β βm πΌ))) |
18 | 17 | adantr 480 | . . . . 5 β’ ((π β§ πΌ = β ) β π· β (βMetβ(β βm πΌ))) |
19 | qndenserrnbl.x | . . . . . . . . . 10 β’ (π β π β (β βm πΌ)) | |
20 | 19 | adantr 480 | . . . . . . . . 9 β’ ((π β§ πΌ = β ) β π β (β βm πΌ)) |
21 | oveq2 7409 | . . . . . . . . . . 11 β’ (πΌ = β β (β βm πΌ) = (β βm β )) | |
22 | reex 11197 | . . . . . . . . . . . . 13 β’ β β V | |
23 | mapdm0 8832 | . . . . . . . . . . . . 13 β’ (β β V β (β βm β ) = {β }) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . . . . 12 β’ (β βm β ) = {β } |
25 | 24 | a1i 11 | . . . . . . . . . . 11 β’ (πΌ = β β (β βm β ) = {β }) |
26 | 21, 25 | eqtrd 2764 | . . . . . . . . . 10 β’ (πΌ = β β (β βm πΌ) = {β }) |
27 | 26 | adantl 481 | . . . . . . . . 9 β’ ((π β§ πΌ = β ) β (β βm πΌ) = {β }) |
28 | 20, 27 | eleqtrd 2827 | . . . . . . . 8 β’ ((π β§ πΌ = β ) β π β {β }) |
29 | elsng 4634 | . . . . . . . . . 10 β’ (π β (β βm πΌ) β (π β {β } β π = β )) | |
30 | 19, 29 | syl 17 | . . . . . . . . 9 β’ (π β (π β {β } β π = β )) |
31 | 30 | adantr 480 | . . . . . . . 8 β’ ((π β§ πΌ = β ) β (π β {β } β π = β )) |
32 | 28, 31 | mpbid 231 | . . . . . . 7 β’ ((π β§ πΌ = β ) β π = β ) |
33 | 32 | eqcomd 2730 | . . . . . 6 β’ ((π β§ πΌ = β ) β β = π) |
34 | 33, 20 | eqeltrd 2825 | . . . . 5 β’ ((π β§ πΌ = β ) β β β (β βm πΌ)) |
35 | qndenserrnbl.e | . . . . . . . 8 β’ (π β πΈ β β+) | |
36 | 35 | rpxrd 13014 | . . . . . . 7 β’ (π β πΈ β β*) |
37 | 35 | rpgt0d 13016 | . . . . . . 7 β’ (π β 0 < πΈ) |
38 | 36, 37 | jca 511 | . . . . . 6 β’ (π β (πΈ β β* β§ 0 < πΈ)) |
39 | 38 | adantr 480 | . . . . 5 β’ ((π β§ πΌ = β ) β (πΈ β β* β§ 0 < πΈ)) |
40 | xblcntr 24239 | . . . . 5 β’ ((π· β (βMetβ(β βm πΌ)) β§ β β (β βm πΌ) β§ (πΈ β β* β§ 0 < πΈ)) β β β (β (ballβπ·)πΈ)) | |
41 | 18, 34, 39, 40 | syl3anc 1368 | . . . 4 β’ ((π β§ πΌ = β ) β β β (β (ballβπ·)πΈ)) |
42 | 33 | oveq1d 7416 | . . . 4 β’ ((π β§ πΌ = β ) β (β (ballβπ·)πΈ) = (π(ballβπ·)πΈ)) |
43 | 41, 42 | eleqtrd 2827 | . . 3 β’ ((π β§ πΌ = β ) β β β (π(ballβπ·)πΈ)) |
44 | eleq1 2813 | . . . 4 β’ (π¦ = β β (π¦ β (π(ballβπ·)πΈ) β β β (π(ballβπ·)πΈ))) | |
45 | 44 | rspcev 3604 | . . 3 β’ ((β β (β βm πΌ) β§ β β (π(ballβπ·)πΈ)) β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) |
46 | 11, 43, 45 | syl2anc 583 | . 2 β’ ((π β§ πΌ = β ) β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) |
47 | 12 | adantr 480 | . . 3 β’ ((π β§ Β¬ πΌ = β ) β πΌ β Fin) |
48 | neqne 2940 | . . . 4 β’ (Β¬ πΌ = β β πΌ β β ) | |
49 | 48 | adantl 481 | . . 3 β’ ((π β§ Β¬ πΌ = β ) β πΌ β β ) |
50 | 19 | adantr 480 | . . 3 β’ ((π β§ Β¬ πΌ = β ) β π β (β βm πΌ)) |
51 | 35 | adantr 480 | . . 3 β’ ((π β§ Β¬ πΌ = β ) β πΈ β β+) |
52 | 47, 49, 50, 13, 51 | qndenserrnbllem 45495 | . 2 β’ ((π β§ Β¬ πΌ = β ) β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) |
53 | 46, 52 | pm2.61dan 810 | 1 β’ (π β βπ¦ β (β βm πΌ)π¦ β (π(ballβπ·)πΈ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 βwrex 3062 Vcvv 3466 β c0 4314 {csn 4620 class class class wbr 5138 βcfv 6533 (class class class)co 7401 βm cmap 8816 Fincfn 8935 βcr 11105 0cc0 11106 β*cxr 11244 < clt 11245 βcq 12929 β+crp 12971 distcds 17205 βMetcxmet 21213 Metcmet 21214 ballcbl 21215 β^crrx 25233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xadd 13090 df-ioo 13325 df-ico 13327 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17386 df-gsum 17387 df-prds 17392 df-pws 17394 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-mhm 18703 df-grp 18856 df-minusg 18857 df-sbg 18858 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-subrng 20436 df-subrg 20461 df-drng 20579 df-field 20580 df-staf 20678 df-srng 20679 df-lmod 20698 df-lss 20769 df-sra 21011 df-rgmod 21012 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-cnfld 21229 df-refld 21466 df-dsmm 21595 df-frlm 21610 df-nm 24413 df-tng 24415 df-tcph 25019 df-rrx 25235 |
This theorem is referenced by: qndenserrnopnlem 45498 |
Copyright terms: Public domain | W3C validator |