Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbl Structured version   Visualization version   GIF version

Theorem qndenserrnbl 46310
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbl.i (𝜑𝐼 ∈ Fin)
qndenserrnbl.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbl.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbl (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦

Proof of Theorem qndenserrnbl
StepHypRef Expression
1 0ex 5307 . . . . . 6 ∅ ∈ V
21snid 4662 . . . . 5 ∅ ∈ {∅}
32a1i 11 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ {∅})
4 oveq2 7439 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m 𝐼) = (ℚ ↑m ∅))
5 qex 13003 . . . . . . . 8 ℚ ∈ V
6 mapdm0 8882 . . . . . . . 8 (ℚ ∈ V → (ℚ ↑m ∅) = {∅})
75, 6ax-mp 5 . . . . . . 7 (ℚ ↑m ∅) = {∅}
87a1i 11 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m ∅) = {∅})
94, 8eqtr2d 2778 . . . . 5 (𝐼 = ∅ → {∅} = (ℚ ↑m 𝐼))
109adantl 481 . . . 4 ((𝜑𝐼 = ∅) → {∅} = (ℚ ↑m 𝐼))
113, 10eleqtrd 2843 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (ℚ ↑m 𝐼))
12 qndenserrnbl.i . . . . . . . 8 (𝜑𝐼 ∈ Fin)
13 qndenserrnbl.d . . . . . . . . 9 𝐷 = (dist‘(ℝ^‘𝐼))
1413rrxmetfi 25446 . . . . . . . 8 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1512, 14syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
16 metxmet 24344 . . . . . . 7 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1715, 16syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1817adantr 480 . . . . 5 ((𝜑𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
19 qndenserrnbl.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
2019adantr 480 . . . . . . . . 9 ((𝜑𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
21 oveq2 7439 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m 𝐼) = (ℝ ↑m ∅))
22 reex 11246 . . . . . . . . . . . . 13 ℝ ∈ V
23 mapdm0 8882 . . . . . . . . . . . . 13 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2422, 23ax-mp 5 . . . . . . . . . . . 12 (ℝ ↑m ∅) = {∅}
2524a1i 11 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m ∅) = {∅})
2621, 25eqtrd 2777 . . . . . . . . . 10 (𝐼 = ∅ → (ℝ ↑m 𝐼) = {∅})
2726adantl 481 . . . . . . . . 9 ((𝜑𝐼 = ∅) → (ℝ ↑m 𝐼) = {∅})
2820, 27eleqtrd 2843 . . . . . . . 8 ((𝜑𝐼 = ∅) → 𝑋 ∈ {∅})
29 elsng 4640 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3019, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3130adantr 480 . . . . . . . 8 ((𝜑𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3228, 31mpbid 232 . . . . . . 7 ((𝜑𝐼 = ∅) → 𝑋 = ∅)
3332eqcomd 2743 . . . . . 6 ((𝜑𝐼 = ∅) → ∅ = 𝑋)
3433, 20eqeltrd 2841 . . . . 5 ((𝜑𝐼 = ∅) → ∅ ∈ (ℝ ↑m 𝐼))
35 qndenserrnbl.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
3635rpxrd 13078 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
3735rpgt0d 13080 . . . . . . 7 (𝜑 → 0 < 𝐸)
3836, 37jca 511 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
3938adantr 480 . . . . 5 ((𝜑𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
40 xblcntr 24421 . . . . 5 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ ∅ ∈ (ℝ ↑m 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4118, 34, 39, 40syl3anc 1373 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4233oveq1d 7446 . . . 4 ((𝜑𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸))
4341, 42eleqtrd 2843 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸))
44 eleq1 2829 . . . 4 (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸)))
4544rspcev 3622 . . 3 ((∅ ∈ (ℚ ↑m 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4611, 43, 45syl2anc 584 . 2 ((𝜑𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4712adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin)
48 neqne 2948 . . . 4 𝐼 = ∅ → 𝐼 ≠ ∅)
4948adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
5019adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
5135adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+)
5247, 49, 50, 13, 51qndenserrnbllem 46309 . 2 ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
5346, 52pm2.61dan 813 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cr 11154  0cc0 11155  *cxr 11294   < clt 11295  cq 12990  +crp 13034  distcds 17306  ∞Metcxmet 21349  Metcmet 21350  ballcbl 21351  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-nm 24595  df-tng 24597  df-tcph 25203  df-rrx 25419
This theorem is referenced by:  qndenserrnopnlem  46312
  Copyright terms: Public domain W3C validator