Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbl Structured version   Visualization version   GIF version

Theorem qndenserrnbl 42457
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbl.i (𝜑𝐼 ∈ Fin)
qndenserrnbl.x (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
qndenserrnbl.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbl.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbl (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐷   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦

Proof of Theorem qndenserrnbl
StepHypRef Expression
1 0ex 5202 . . . . . 6 ∅ ∈ V
21snid 4591 . . . . 5 ∅ ∈ {∅}
32a1i 11 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ {∅})
4 oveq2 7153 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m 𝐼) = (ℚ ↑m ∅))
5 qex 12348 . . . . . . . 8 ℚ ∈ V
6 mapdm0 8410 . . . . . . . 8 (ℚ ∈ V → (ℚ ↑m ∅) = {∅})
75, 6ax-mp 5 . . . . . . 7 (ℚ ↑m ∅) = {∅}
87a1i 11 . . . . . 6 (𝐼 = ∅ → (ℚ ↑m ∅) = {∅})
94, 8eqtr2d 2854 . . . . 5 (𝐼 = ∅ → {∅} = (ℚ ↑m 𝐼))
109adantl 482 . . . 4 ((𝜑𝐼 = ∅) → {∅} = (ℚ ↑m 𝐼))
113, 10eleqtrd 2912 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (ℚ ↑m 𝐼))
12 qndenserrnbl.i . . . . . . . 8 (𝜑𝐼 ∈ Fin)
13 qndenserrnbl.d . . . . . . . . 9 𝐷 = (dist‘(ℝ^‘𝐼))
1413rrxmetfi 23942 . . . . . . . 8 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
1512, 14syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
16 metxmet 22871 . . . . . . 7 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1715, 16syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
1817adantr 481 . . . . 5 ((𝜑𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
19 qndenserrnbl.x . . . . . . . . . 10 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
2019adantr 481 . . . . . . . . 9 ((𝜑𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
21 oveq2 7153 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m 𝐼) = (ℝ ↑m ∅))
22 reex 10616 . . . . . . . . . . . . 13 ℝ ∈ V
23 mapdm0 8410 . . . . . . . . . . . . 13 (ℝ ∈ V → (ℝ ↑m ∅) = {∅})
2422, 23ax-mp 5 . . . . . . . . . . . 12 (ℝ ↑m ∅) = {∅}
2524a1i 11 . . . . . . . . . . 11 (𝐼 = ∅ → (ℝ ↑m ∅) = {∅})
2621, 25eqtrd 2853 . . . . . . . . . 10 (𝐼 = ∅ → (ℝ ↑m 𝐼) = {∅})
2726adantl 482 . . . . . . . . 9 ((𝜑𝐼 = ∅) → (ℝ ↑m 𝐼) = {∅})
2820, 27eleqtrd 2912 . . . . . . . 8 ((𝜑𝐼 = ∅) → 𝑋 ∈ {∅})
29 elsng 4571 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3019, 29syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3130adantr 481 . . . . . . . 8 ((𝜑𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅))
3228, 31mpbid 233 . . . . . . 7 ((𝜑𝐼 = ∅) → 𝑋 = ∅)
3332eqcomd 2824 . . . . . 6 ((𝜑𝐼 = ∅) → ∅ = 𝑋)
3433, 20eqeltrd 2910 . . . . 5 ((𝜑𝐼 = ∅) → ∅ ∈ (ℝ ↑m 𝐼))
35 qndenserrnbl.e . . . . . . . 8 (𝜑𝐸 ∈ ℝ+)
3635rpxrd 12420 . . . . . . 7 (𝜑𝐸 ∈ ℝ*)
3735rpgt0d 12422 . . . . . . 7 (𝜑 → 0 < 𝐸)
3836, 37jca 512 . . . . . 6 (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
3938adantr 481 . . . . 5 ((𝜑𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸))
40 xblcntr 22948 . . . . 5 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ ∅ ∈ (ℝ ↑m 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4118, 34, 39, 40syl3anc 1363 . . . 4 ((𝜑𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸))
4233oveq1d 7160 . . . 4 ((𝜑𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸))
4341, 42eleqtrd 2912 . . 3 ((𝜑𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸))
44 eleq1 2897 . . . 4 (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸)))
4544rspcev 3620 . . 3 ((∅ ∈ (ℚ ↑m 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4611, 43, 45syl2anc 584 . 2 ((𝜑𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
4712adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin)
48 neqne 3021 . . . 4 𝐼 = ∅ → 𝐼 ≠ ∅)
4948adantl 482 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅)
5019adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼))
5135adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+)
5247, 49, 50, 13, 51qndenserrnbllem 42456 . 2 ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
5346, 52pm2.61dan 809 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wrex 3136  Vcvv 3492  c0 4288  {csn 4557   class class class wbr 5057  cfv 6348  (class class class)co 7145  m cmap 8395  Fincfn 8497  cr 10524  0cc0 10525  *cxr 10662   < clt 10663  cq 12336  +crp 12377  distcds 16562  ∞Metcxmet 20458  Metcmet 20459  ballcbl 20460  ℝ^crrx 23913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-dvr 19362  df-rnghom 19396  df-drng 19433  df-field 19434  df-subrg 19462  df-staf 19545  df-srng 19546  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-cnfld 20474  df-refld 20677  df-dsmm 20804  df-frlm 20819  df-nm 23119  df-tng 23121  df-tcph 23700  df-rrx 23915
This theorem is referenced by:  qndenserrnopnlem  42459
  Copyright terms: Public domain W3C validator