![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnbl | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnbl.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrnbl.x | ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑𝑚 𝐼)) |
qndenserrnbl.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
qndenserrnbl.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
Ref | Expression |
---|---|
qndenserrnbl | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5026 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | 1 | snid 4429 | . . . . 5 ⊢ ∅ ∈ {∅} |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ {∅}) |
4 | oveq2 6930 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑𝑚 𝐼) = (ℚ ↑𝑚 ∅)) | |
5 | qex 12108 | . . . . . . . 8 ⊢ ℚ ∈ V | |
6 | mapdm0 8155 | . . . . . . . 8 ⊢ (ℚ ∈ V → (ℚ ↑𝑚 ∅) = {∅}) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (ℚ ↑𝑚 ∅) = {∅} |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑𝑚 ∅) = {∅}) |
9 | 4, 8 | eqtr2d 2814 | . . . . 5 ⊢ (𝐼 = ∅ → {∅} = (ℚ ↑𝑚 𝐼)) |
10 | 9 | adantl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → {∅} = (ℚ ↑𝑚 𝐼)) |
11 | 3, 10 | eleqtrd 2860 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℚ ↑𝑚 𝐼)) |
12 | qndenserrnbl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
13 | qndenserrnbl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
14 | 13 | rrxmetfi 23618 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼))) |
15 | 12, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼))) |
16 | metxmet 22547 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼))) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼))) |
18 | 17 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼))) |
19 | qndenserrnbl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑𝑚 𝐼)) | |
20 | 19 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑𝑚 𝐼)) |
21 | oveq2 6930 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 ∅)) | |
22 | reex 10363 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
23 | mapdm0 8155 | . . . . . . . . . . . . 13 ⊢ (ℝ ∈ V → (ℝ ↑𝑚 ∅) = {∅}) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℝ ↑𝑚 ∅) = {∅} |
25 | 24 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑𝑚 ∅) = {∅}) |
26 | 21, 25 | eqtrd 2813 | . . . . . . . . . 10 ⊢ (𝐼 = ∅ → (ℝ ↑𝑚 𝐼) = {∅}) |
27 | 26 | adantl 475 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (ℝ ↑𝑚 𝐼) = {∅}) |
28 | 20, 27 | eleqtrd 2860 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ {∅}) |
29 | elsng 4411 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (ℝ ↑𝑚 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) | |
30 | 19, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
31 | 30 | adantr 474 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
32 | 28, 31 | mpbid 224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 = ∅) |
33 | 32 | eqcomd 2783 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ = 𝑋) |
34 | 33, 20 | eqeltrd 2858 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℝ ↑𝑚 𝐼)) |
35 | qndenserrnbl.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
36 | 35 | rpxrd 12182 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
37 | 35 | rpgt0d 12184 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝐸) |
38 | 36, 37 | jca 507 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
39 | 38 | adantr 474 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
40 | xblcntr 22624 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)) ∧ ∅ ∈ (ℝ ↑𝑚 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸)) | |
41 | 18, 34, 39, 40 | syl3anc 1439 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸)) |
42 | 33 | oveq1d 6937 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸)) |
43 | 41, 42 | eleqtrd 2860 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸)) |
44 | eleq1 2846 | . . . 4 ⊢ (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸))) | |
45 | 44 | rspcev 3510 | . . 3 ⊢ ((∅ ∈ (ℚ ↑𝑚 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
46 | 11, 43, 45 | syl2anc 579 | . 2 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
47 | 12 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin) |
48 | neqne 2976 | . . . 4 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
49 | 48 | adantl 475 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
50 | 19 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑𝑚 𝐼)) |
51 | 35 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+) |
52 | 47, 49, 50, 13, 51 | qndenserrnbllem 41431 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
53 | 46, 52 | pm2.61dan 803 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∃wrex 3090 Vcvv 3397 ∅c0 4140 {csn 4397 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 Fincfn 8241 ℝcr 10271 0cc0 10272 ℝ*cxr 10410 < clt 10411 ℚcq 12095 ℝ+crp 12137 distcds 16347 ∞Metcxmet 20127 Metcmet 20128 ballcbl 20129 ℝ^crrx 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xadd 12258 df-ioo 12491 df-ico 12493 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-0g 16488 df-gsum 16489 df-prds 16494 df-pws 16496 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-ghm 18042 df-cntz 18133 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-rnghom 19104 df-drng 19141 df-field 19142 df-subrg 19170 df-staf 19237 df-srng 19238 df-lmod 19257 df-lss 19325 df-sra 19569 df-rgmod 19570 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-cnfld 20143 df-refld 20348 df-dsmm 20475 df-frlm 20490 df-nm 22795 df-tng 22797 df-tcph 23376 df-rrx 23591 |
This theorem is referenced by: qndenserrnopnlem 41434 |
Copyright terms: Public domain | W3C validator |