Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnbl | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnbl.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrnbl.x | ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
qndenserrnbl.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
qndenserrnbl.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
Ref | Expression |
---|---|
qndenserrnbl | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | 1 | snid 4594 | . . . . 5 ⊢ ∅ ∈ {∅} |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ {∅}) |
4 | oveq2 7263 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑m 𝐼) = (ℚ ↑m ∅)) | |
5 | qex 12630 | . . . . . . . 8 ⊢ ℚ ∈ V | |
6 | mapdm0 8588 | . . . . . . . 8 ⊢ (ℚ ∈ V → (ℚ ↑m ∅) = {∅}) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (ℚ ↑m ∅) = {∅} |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑m ∅) = {∅}) |
9 | 4, 8 | eqtr2d 2779 | . . . . 5 ⊢ (𝐼 = ∅ → {∅} = (ℚ ↑m 𝐼)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → {∅} = (ℚ ↑m 𝐼)) |
11 | 3, 10 | eleqtrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℚ ↑m 𝐼)) |
12 | qndenserrnbl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
13 | qndenserrnbl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
14 | 13 | rrxmetfi 24481 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
15 | 12, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
16 | metxmet 23395 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
19 | qndenserrnbl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) | |
20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
21 | oveq2 7263 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑m 𝐼) = (ℝ ↑m ∅)) | |
22 | reex 10893 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
23 | mapdm0 8588 | . . . . . . . . . . . . 13 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℝ ↑m ∅) = {∅} |
25 | 24 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑m ∅) = {∅}) |
26 | 21, 25 | eqtrd 2778 | . . . . . . . . . 10 ⊢ (𝐼 = ∅ → (ℝ ↑m 𝐼) = {∅}) |
27 | 26 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (ℝ ↑m 𝐼) = {∅}) |
28 | 20, 27 | eleqtrd 2841 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ {∅}) |
29 | elsng 4572 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) | |
30 | 19, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
31 | 30 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
32 | 28, 31 | mpbid 231 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 = ∅) |
33 | 32 | eqcomd 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ = 𝑋) |
34 | 33, 20 | eqeltrd 2839 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℝ ↑m 𝐼)) |
35 | qndenserrnbl.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
36 | 35 | rpxrd 12702 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
37 | 35 | rpgt0d 12704 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝐸) |
38 | 36, 37 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
39 | 38 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
40 | xblcntr 23472 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ ∅ ∈ (ℝ ↑m 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸)) | |
41 | 18, 34, 39, 40 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸)) |
42 | 33 | oveq1d 7270 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸)) |
43 | 41, 42 | eleqtrd 2841 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸)) |
44 | eleq1 2826 | . . . 4 ⊢ (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸))) | |
45 | 44 | rspcev 3552 | . . 3 ⊢ ((∅ ∈ (ℚ ↑m 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
46 | 11, 43, 45 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
47 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin) |
48 | neqne 2950 | . . . 4 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
49 | 48 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
50 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
51 | 35 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+) |
52 | 47, 49, 50, 13, 51 | qndenserrnbllem 43725 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
53 | 46, 52 | pm2.61dan 809 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∅c0 4253 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 < clt 10940 ℚcq 12617 ℝ+crp 12659 distcds 16897 ∞Metcxmet 20495 Metcmet 20496 ballcbl 20497 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-cnfld 20511 df-refld 20722 df-dsmm 20849 df-frlm 20864 df-nm 23644 df-tng 23646 df-tcph 24238 df-rrx 24454 |
This theorem is referenced by: qndenserrnopnlem 43728 |
Copyright terms: Public domain | W3C validator |