| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnbl | Structured version Visualization version GIF version | ||
| Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| qndenserrnbl.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| qndenserrnbl.x | ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
| qndenserrnbl.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
| qndenserrnbl.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| qndenserrnbl | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5277 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4638 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 3 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ {∅}) |
| 4 | oveq2 7413 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑m 𝐼) = (ℚ ↑m ∅)) | |
| 5 | qex 12977 | . . . . . . . 8 ⊢ ℚ ∈ V | |
| 6 | mapdm0 8856 | . . . . . . . 8 ⊢ (ℚ ∈ V → (ℚ ↑m ∅) = {∅}) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (ℚ ↑m ∅) = {∅} |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (𝐼 = ∅ → (ℚ ↑m ∅) = {∅}) |
| 9 | 4, 8 | eqtr2d 2771 | . . . . 5 ⊢ (𝐼 = ∅ → {∅} = (ℚ ↑m 𝐼)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → {∅} = (ℚ ↑m 𝐼)) |
| 11 | 3, 10 | eleqtrd 2836 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℚ ↑m 𝐼)) |
| 12 | qndenserrnbl.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 13 | qndenserrnbl.d | . . . . . . . . 9 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
| 14 | 13 | rrxmetfi 25364 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
| 15 | 12, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
| 16 | metxmet 24273 | . . . . . . 7 ⊢ (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
| 19 | qndenserrnbl.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) | |
| 20 | 19 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
| 21 | oveq2 7413 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑m 𝐼) = (ℝ ↑m ∅)) | |
| 22 | reex 11220 | . . . . . . . . . . . . 13 ⊢ ℝ ∈ V | |
| 23 | mapdm0 8856 | . . . . . . . . . . . . 13 ⊢ (ℝ ∈ V → (ℝ ↑m ∅) = {∅}) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ (ℝ ↑m ∅) = {∅} |
| 25 | 24 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝐼 = ∅ → (ℝ ↑m ∅) = {∅}) |
| 26 | 21, 25 | eqtrd 2770 | . . . . . . . . . 10 ⊢ (𝐼 = ∅ → (ℝ ↑m 𝐼) = {∅}) |
| 27 | 26 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (ℝ ↑m 𝐼) = {∅}) |
| 28 | 20, 27 | eleqtrd 2836 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 ∈ {∅}) |
| 29 | elsng 4615 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (ℝ ↑m 𝐼) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) | |
| 30 | 19, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
| 31 | 30 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝑋 ∈ {∅} ↔ 𝑋 = ∅)) |
| 32 | 28, 31 | mpbid 232 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐼 = ∅) → 𝑋 = ∅) |
| 33 | 32 | eqcomd 2741 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ = 𝑋) |
| 34 | 33, 20 | eqeltrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (ℝ ↑m 𝐼)) |
| 35 | qndenserrnbl.e | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 36 | 35 | rpxrd 13052 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ ℝ*) |
| 37 | 35 | rpgt0d 13054 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝐸) |
| 38 | 36, 37 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
| 39 | 38 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) |
| 40 | xblcntr 24350 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ ∅ ∈ (ℝ ↑m 𝐼) ∧ (𝐸 ∈ ℝ* ∧ 0 < 𝐸)) → ∅ ∈ (∅(ball‘𝐷)𝐸)) | |
| 41 | 18, 34, 39, 40 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (∅(ball‘𝐷)𝐸)) |
| 42 | 33 | oveq1d 7420 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 = ∅) → (∅(ball‘𝐷)𝐸) = (𝑋(ball‘𝐷)𝐸)) |
| 43 | 41, 42 | eleqtrd 2836 | . . 3 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∅ ∈ (𝑋(ball‘𝐷)𝐸)) |
| 44 | eleq1 2822 | . . . 4 ⊢ (𝑦 = ∅ → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∅ ∈ (𝑋(ball‘𝐷)𝐸))) | |
| 45 | 44 | rspcev 3601 | . . 3 ⊢ ((∅ ∈ (ℚ ↑m 𝐼) ∧ ∅ ∈ (𝑋(ball‘𝐷)𝐸)) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
| 46 | 11, 43, 45 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
| 47 | 12 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ∈ Fin) |
| 48 | neqne 2940 | . . . 4 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) | |
| 49 | 48 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
| 50 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
| 51 | 35 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → 𝐸 ∈ ℝ+) |
| 52 | 47, 49, 50, 13, 51 | qndenserrnbllem 46323 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐼 = ∅) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
| 53 | 46, 52 | pm2.61dan 812 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 ∅c0 4308 {csn 4601 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 ℝcr 11128 0cc0 11129 ℝ*cxr 11268 < clt 11269 ℚcq 12964 ℝ+crp 13008 distcds 17280 ∞Metcxmet 21300 Metcmet 21301 ballcbl 21302 ℝ^crrx 25335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xadd 13129 df-ioo 13366 df-ico 13368 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-drng 20691 df-field 20692 df-staf 20799 df-srng 20800 df-lmod 20819 df-lss 20889 df-sra 21131 df-rgmod 21132 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-cnfld 21316 df-refld 21565 df-dsmm 21692 df-frlm 21707 df-nm 24521 df-tng 24523 df-tcph 25121 df-rrx 25337 |
| This theorem is referenced by: qndenserrnopnlem 46326 |
| Copyright terms: Public domain | W3C validator |