Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 46131
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6755 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
54fdmd 6726 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
65eqcomd 2740 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
76adantr 480 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
81, 7eleqtrd 2835 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
9 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
109recnd 11271 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
12 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1312sselda 3963 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1413recnd 11271 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
15 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
17 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1811, 14, 16, 17addneintrd 11450 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
1918neneqd 2936 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
209adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2120, 13readdcld 11272 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
22 elsng 4620 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2321, 22syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2419, 23mtbird 325 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
258, 24eldifd 3942 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2625ralrimiva 3133 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
27 eqid 2734 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2827rnmptss 7123 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2926, 28syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
30 eqid 2734 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
31 eqid 2734 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
32 ax-resscn 11194 . . . . . 6 ℝ ⊆ ℂ
3312, 32sstrdi 3976 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3430, 33, 10, 15constlimc 45596 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3533, 31, 15idlimc 45598 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3630, 31, 27, 11, 14, 34, 35addlimc 45620 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
37 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3829, 36, 37limccog 45592 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
39 nfv 1913 . . . . . 6 𝑠𝜑
4039, 27, 1rnmptssd 45158 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
41 cores 6249 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4240, 41syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4321, 27fmptd 7114 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
44 fcompt 7133 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
452, 43, 44syl2anc 584 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
46 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
4746a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
48 oveq2 7421 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
4948fveq2d 6890 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
5049cbvmptv 5235 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
5150a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
52 eqidd 2735 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
5348adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
54 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
559adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
5612sselda 3963 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
5755, 56readdcld 11272 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
5852, 53, 54, 57fvmptd 7003 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
5958eqcomd 2740 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
6059fveq2d 6890 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
6160mpteq2dva 5222 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
6247, 51, 613eqtrrd 2774 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
6342, 45, 623eqtrd 2773 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
6463oveq1d 7428 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
6538, 64eleqtrd 2835 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  cdif 3928  wss 3931  {csn 4606  cmpt 5205  dom cdm 5665  ran crn 5666  cres 5667  ccom 5669  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  cr 11136   + caddc 11140   lim climc 25833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-starv 17288  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-rest 17438  df-topn 17439  df-topgen 17459  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cnp 23182  df-xms 24275  df-ms 24276  df-limc 25837
This theorem is referenced by:  fourierdlem74  46152  fourierdlem75  46153  fourierdlem76  46154  fourierdlem84  46162
  Copyright terms: Public domain W3C validator