Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 45337
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6758 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
54fdmd 6728 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
65eqcomd 2737 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
76adantr 480 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
81, 7eleqtrd 2834 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
9 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
109recnd 11249 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
12 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1312sselda 3982 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1413recnd 11249 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
15 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
17 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1811, 14, 16, 17addneintrd 11428 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
1918neneqd 2944 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
209adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2120, 13readdcld 11250 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
22 elsng 4642 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2321, 22syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2419, 23mtbird 325 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
258, 24eldifd 3959 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2625ralrimiva 3145 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
27 eqid 2731 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2827rnmptss 7124 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2926, 28syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
30 eqid 2731 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
31 eqid 2731 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
32 ax-resscn 11173 . . . . . 6 ℝ ⊆ ℂ
3312, 32sstrdi 3994 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3430, 33, 10, 15constlimc 44802 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3533, 31, 15idlimc 44804 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3630, 31, 27, 11, 14, 34, 35addlimc 44826 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
37 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3829, 36, 37limccog 44798 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
39 nfv 1916 . . . . . 6 𝑠𝜑
4039, 27, 1rnmptssd 44357 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
41 cores 6248 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4240, 41syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4321, 27fmptd 7115 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
44 fcompt 7133 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
452, 43, 44syl2anc 583 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
46 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
4746a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
48 oveq2 7420 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
4948fveq2d 6895 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
5049cbvmptv 5261 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
5150a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
52 eqidd 2732 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
5348adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
54 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
559adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
5612sselda 3982 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
5755, 56readdcld 11250 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
5852, 53, 54, 57fvmptd 7005 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
5958eqcomd 2737 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
6059fveq2d 6895 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
6160mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
6247, 51, 613eqtrrd 2776 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
6342, 45, 623eqtrd 2775 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
6463oveq1d 7427 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
6538, 64eleqtrd 2834 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  cdif 3945  wss 3948  {csn 4628  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115   + caddc 11119   lim climc 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-fz 13492  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-rest 17375  df-topn 17376  df-topgen 17396  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-cnfld 21235  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cnp 23053  df-xms 24147  df-ms 24148  df-limc 25716
This theorem is referenced by:  fourierdlem74  45358  fourierdlem75  45359  fourierdlem76  45360  fourierdlem84  45368
  Copyright terms: Public domain W3C validator