Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem53 Structured version   Visualization version   GIF version

Theorem fourierdlem53 43590
Description: The limit of 𝐹(𝑠) at (𝑋 + 𝐷) is the limit of 𝐹(𝑋 + 𝑠) at 𝐷. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem53.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem53.2 (𝜑𝑋 ∈ ℝ)
fourierdlem53.3 (𝜑𝐴 ⊆ ℝ)
fourierdlem53.g 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
fourierdlem53.xps ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
fourierdlem53.b (𝜑𝐵 ⊆ ℝ)
fourierdlem53.sned ((𝜑𝑠𝐴) → 𝑠𝐷)
fourierdlem53.c (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
fourierdlem53.d (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fourierdlem53 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐺(𝑠)

Proof of Theorem fourierdlem53
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem53.xps . . . . . . 7 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ 𝐵)
2 fourierdlem53.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
3 fourierdlem53.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
42, 3fssresd 6625 . . . . . . . . . 10 (𝜑 → (𝐹𝐵):𝐵⟶ℝ)
54fdmd 6595 . . . . . . . . 9 (𝜑 → dom (𝐹𝐵) = 𝐵)
65eqcomd 2744 . . . . . . . 8 (𝜑𝐵 = dom (𝐹𝐵))
76adantr 480 . . . . . . 7 ((𝜑𝑠𝐴) → 𝐵 = dom (𝐹𝐵))
81, 7eleqtrd 2841 . . . . . 6 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ dom (𝐹𝐵))
9 fourierdlem53.2 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℝ)
109recnd 10934 . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℂ)
12 fourierdlem53.3 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1312sselda 3917 . . . . . . . . . 10 ((𝜑𝑠𝐴) → 𝑠 ∈ ℝ)
1413recnd 10934 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠 ∈ ℂ)
15 fourierdlem53.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℂ)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝐷 ∈ ℂ)
17 fourierdlem53.sned . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑠𝐷)
1811, 14, 16, 17addneintrd 11112 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ≠ (𝑋 + 𝐷))
1918neneqd 2947 . . . . . . 7 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) = (𝑋 + 𝐷))
209adantr 480 . . . . . . . . 9 ((𝜑𝑠𝐴) → 𝑋 ∈ ℝ)
2120, 13readdcld 10935 . . . . . . . 8 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ ℝ)
22 elsng 4572 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ℝ → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2321, 22syl 17 . . . . . . 7 ((𝜑𝑠𝐴) → ((𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)} ↔ (𝑋 + 𝑠) = (𝑋 + 𝐷)))
2419, 23mtbird 324 . . . . . 6 ((𝜑𝑠𝐴) → ¬ (𝑋 + 𝑠) ∈ {(𝑋 + 𝐷)})
258, 24eldifd 3894 . . . . 5 ((𝜑𝑠𝐴) → (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2625ralrimiva 3107 . . . 4 (𝜑 → ∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
27 eqid 2738 . . . . 5 (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠))
2827rnmptss 6978 . . . 4 (∀𝑠𝐴 (𝑋 + 𝑠) ∈ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}) → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
2926, 28syl 17 . . 3 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ (dom (𝐹𝐵) ∖ {(𝑋 + 𝐷)}))
30 eqid 2738 . . . 4 (𝑠𝐴𝑋) = (𝑠𝐴𝑋)
31 eqid 2738 . . . 4 (𝑠𝐴𝑠) = (𝑠𝐴𝑠)
32 ax-resscn 10859 . . . . . 6 ℝ ⊆ ℂ
3312, 32sstrdi 3929 . . . . 5 (𝜑𝐴 ⊆ ℂ)
3430, 33, 10, 15constlimc 43055 . . . 4 (𝜑𝑋 ∈ ((𝑠𝐴𝑋) lim 𝐷))
3533, 31, 15idlimc 43057 . . . 4 (𝜑𝐷 ∈ ((𝑠𝐴𝑠) lim 𝐷))
3630, 31, 27, 11, 14, 34, 35addlimc 43079 . . 3 (𝜑 → (𝑋 + 𝐷) ∈ ((𝑠𝐴 ↦ (𝑋 + 𝑠)) lim 𝐷))
37 fourierdlem53.c . . 3 (𝜑𝐶 ∈ ((𝐹𝐵) lim (𝑋 + 𝐷)))
3829, 36, 37limccog 43051 . 2 (𝜑𝐶 ∈ (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷))
39 nfv 1918 . . . . . 6 𝑠𝜑
4039, 27, 1rnmptssd 42624 . . . . 5 (𝜑 → ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵)
41 cores 6142 . . . . 5 (ran (𝑠𝐴 ↦ (𝑋 + 𝑠)) ⊆ 𝐵 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4240, 41syl 17 . . . 4 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))))
4321, 27fmptd 6970 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ)
44 fcompt 6987 . . . . 5 ((𝐹:ℝ⟶ℝ ∧ (𝑠𝐴 ↦ (𝑋 + 𝑠)):𝐴⟶ℝ) → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
452, 43, 44syl2anc 583 . . . 4 (𝜑 → (𝐹 ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
46 fourierdlem53.g . . . . . 6 𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠)))
4746a1i 11 . . . . 5 (𝜑𝐺 = (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))))
48 oveq2 7263 . . . . . . . 8 (𝑠 = 𝑥 → (𝑋 + 𝑠) = (𝑋 + 𝑥))
4948fveq2d 6760 . . . . . . 7 (𝑠 = 𝑥 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑥)))
5049cbvmptv 5183 . . . . . 6 (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥)))
5150a1i 11 . . . . 5 (𝜑 → (𝑠𝐴 ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))))
52 eqidd 2739 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑠𝐴 ↦ (𝑋 + 𝑠)) = (𝑠𝐴 ↦ (𝑋 + 𝑠)))
5348adantl 481 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑠 = 𝑥) → (𝑋 + 𝑠) = (𝑋 + 𝑥))
54 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
559adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑋 ∈ ℝ)
5612sselda 3917 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
5755, 56readdcld 10935 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) ∈ ℝ)
5852, 53, 54, 57fvmptd 6864 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥) = (𝑋 + 𝑥))
5958eqcomd 2744 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑋 + 𝑥) = ((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))
6059fveq2d 6760 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹‘(𝑋 + 𝑥)) = (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥)))
6160mpteq2dva 5170 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐹‘(𝑋 + 𝑥))) = (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))))
6247, 51, 613eqtrrd 2783 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐹‘((𝑠𝐴 ↦ (𝑋 + 𝑠))‘𝑥))) = 𝐺)
6342, 45, 623eqtrd 2782 . . 3 (𝜑 → ((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) = 𝐺)
6463oveq1d 7270 . 2 (𝜑 → (((𝐹𝐵) ∘ (𝑠𝐴 ↦ (𝑋 + 𝑠))) lim 𝐷) = (𝐺 lim 𝐷))
6538, 64eleqtrd 2841 1 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  wss 3883  {csn 4558  cmpt 5153  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cnp 22287  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  fourierdlem74  43611  fourierdlem75  43612  fourierdlem76  43613  fourierdlem84  43621
  Copyright terms: Public domain W3C validator