Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx Structured version   Visualization version   GIF version

Theorem plymulx 34546
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11132 . . . . . . 7 ℝ ⊆ ℂ
2 1re 11181 . . . . . . 7 1 ∈ ℝ
3 plyid 26121 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
41, 2, 3mp2an 692 . . . . . 6 Xp ∈ (Poly‘ℝ)
5 plymul02 34544 . . . . . . 7 (Xp ∈ (Poly‘ℝ) → (0𝑝f · Xp) = 0𝑝)
65fveq2d 6865 . . . . . 6 (Xp ∈ (Poly‘ℝ) → (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝))
74, 6ax-mp 5 . . . . 5 (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝)
8 fconstmpt 5703 . . . . . 6 (ℕ0 × {0}) = (𝑛 ∈ ℕ0 ↦ 0)
9 coe0 26168 . . . . . 6 (coeff‘0𝑝) = (ℕ0 × {0})
10 eqidd 2731 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑛 = 0) → 0 = 0)
11 elnnne0 12463 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
12 df-ne 2927 . . . . . . . . . . . 12 (𝑛 ≠ 0 ↔ ¬ 𝑛 = 0)
1312anbi2i 623 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ≠ 0) ↔ (𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0))
1411, 13bitr2i 276 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) ↔ 𝑛 ∈ ℕ)
15 nnm1nn0 12490 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
1614, 15sylbi 217 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
17 eqidd 2731 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → 0 = 0)
18 fconstmpt 5703 . . . . . . . . . . 11 (ℕ0 × {0}) = (𝑚 ∈ ℕ0 ↦ 0)
199, 18eqtri 2753 . . . . . . . . . 10 (coeff‘0𝑝) = (𝑚 ∈ ℕ0 ↦ 0)
20 c0ex 11175 . . . . . . . . . 10 0 ∈ V
2117, 19, 20fvmpt 6971 . . . . . . . . 9 ((𝑛 − 1) ∈ ℕ0 → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2216, 21syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2310, 22ifeqda 4528 . . . . . . 7 (𝑛 ∈ ℕ0 → if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))) = 0)
2423mpteq2ia 5205 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ 0)
258, 9, 243eqtr4ri 2764 . . . . 5 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (coeff‘0𝑝)
267, 25eqtr4i 2756 . . . 4 (coeff‘(0𝑝f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
27 fvoveq1 7413 . . . 4 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (coeff‘(0𝑝f · Xp)))
28 simpl 482 . . . . . . . 8 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → 𝐹 = 0𝑝)
2928fveq2d 6865 . . . . . . 7 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → (coeff‘𝐹) = (coeff‘0𝑝))
3029fveq1d 6863 . . . . . 6 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 1)) = ((coeff‘0𝑝)‘(𝑛 − 1)))
3130ifeq2d 4512 . . . . 5 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) = if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
3231mpteq2dva 5203 . . . 4 (𝐹 = 0𝑝 → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))))
3326, 27, 323eqtr4a 2791 . . 3 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
3433adantl 481 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
35 simpl 482 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ (Poly‘ℝ))
36 elsng 4606 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ∈ {0𝑝} ↔ 𝐹 = 0𝑝))
3736notbid 318 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (¬ 𝐹 ∈ {0𝑝} ↔ ¬ 𝐹 = 0𝑝))
3837biimpar 477 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → ¬ 𝐹 ∈ {0𝑝})
3935, 38eldifd 3928 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
40 plymulx0 34545 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4139, 40syl 17 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4234, 41pm2.61dan 812 1 (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  ifcif 4491  {csn 4592  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  cmin 11412  cn 12193  0cn0 12449  0𝑝c0p 25577  Polycply 26096  Xpcidp 26097  coeffccoe 26098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator