Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx Structured version   Visualization version   GIF version

Theorem plymulx 34213
Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11203 . . . . . . 7 ℝ ⊆ ℂ
2 1re 11252 . . . . . . 7 1 ∈ ℝ
3 plyid 26163 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
41, 2, 3mp2an 690 . . . . . 6 Xp ∈ (Poly‘ℝ)
5 plymul02 34211 . . . . . . 7 (Xp ∈ (Poly‘ℝ) → (0𝑝f · Xp) = 0𝑝)
65fveq2d 6906 . . . . . 6 (Xp ∈ (Poly‘ℝ) → (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝))
74, 6ax-mp 5 . . . . 5 (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝)
8 fconstmpt 5744 . . . . . 6 (ℕ0 × {0}) = (𝑛 ∈ ℕ0 ↦ 0)
9 coe0 26210 . . . . . 6 (coeff‘0𝑝) = (ℕ0 × {0})
10 eqidd 2729 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑛 = 0) → 0 = 0)
11 elnnne0 12524 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
12 df-ne 2938 . . . . . . . . . . . 12 (𝑛 ≠ 0 ↔ ¬ 𝑛 = 0)
1312anbi2i 621 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ≠ 0) ↔ (𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0))
1411, 13bitr2i 275 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) ↔ 𝑛 ∈ ℕ)
15 nnm1nn0 12551 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
1614, 15sylbi 216 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
17 eqidd 2729 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → 0 = 0)
18 fconstmpt 5744 . . . . . . . . . . 11 (ℕ0 × {0}) = (𝑚 ∈ ℕ0 ↦ 0)
199, 18eqtri 2756 . . . . . . . . . 10 (coeff‘0𝑝) = (𝑚 ∈ ℕ0 ↦ 0)
20 c0ex 11246 . . . . . . . . . 10 0 ∈ V
2117, 19, 20fvmpt 7010 . . . . . . . . 9 ((𝑛 − 1) ∈ ℕ0 → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2216, 21syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2310, 22ifeqda 4568 . . . . . . 7 (𝑛 ∈ ℕ0 → if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))) = 0)
2423mpteq2ia 5255 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ 0)
258, 9, 243eqtr4ri 2767 . . . . 5 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (coeff‘0𝑝)
267, 25eqtr4i 2759 . . . 4 (coeff‘(0𝑝f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
27 fvoveq1 7449 . . . 4 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (coeff‘(0𝑝f · Xp)))
28 simpl 481 . . . . . . . 8 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → 𝐹 = 0𝑝)
2928fveq2d 6906 . . . . . . 7 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → (coeff‘𝐹) = (coeff‘0𝑝))
3029fveq1d 6904 . . . . . 6 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 1)) = ((coeff‘0𝑝)‘(𝑛 − 1)))
3130ifeq2d 4552 . . . . 5 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) = if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
3231mpteq2dva 5252 . . . 4 (𝐹 = 0𝑝 → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))))
3326, 27, 323eqtr4a 2794 . . 3 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
3433adantl 480 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
35 simpl 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ (Poly‘ℝ))
36 elsng 4646 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ∈ {0𝑝} ↔ 𝐹 = 0𝑝))
3736notbid 317 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (¬ 𝐹 ∈ {0𝑝} ↔ ¬ 𝐹 = 0𝑝))
3837biimpar 476 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → ¬ 𝐹 ∈ {0𝑝})
3935, 38eldifd 3960 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
40 plymulx0 34212 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4139, 40syl 17 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4234, 41pm2.61dan 811 1 (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  cdif 3946  wss 3949  ifcif 4532  {csn 4632  cmpt 5235   × cxp 5680  cfv 6553  (class class class)co 7426  f cof 7689  cc 11144  cr 11145  0cc0 11146  1c1 11147   · cmul 11151  cmin 11482  cn 12250  0cn0 12510  0𝑝c0p 25618  Polycply 26138  Xpcidp 26139  coeffccoe 26140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-rlim 15473  df-sum 15673  df-0p 25619  df-ply 26142  df-idp 26143  df-coe 26144  df-dgr 26145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator