Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx Structured version   Visualization version   GIF version

Theorem plymulx 31932
 Description: Coefficients of a polynomial multiplied by Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
Distinct variable group:   𝑛,𝐹

Proof of Theorem plymulx
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 10587 . . . . . . 7 ℝ ⊆ ℂ
2 1re 10634 . . . . . . 7 1 ∈ ℝ
3 plyid 24810 . . . . . . 7 ((ℝ ⊆ ℂ ∧ 1 ∈ ℝ) → Xp ∈ (Poly‘ℝ))
41, 2, 3mp2an 691 . . . . . 6 Xp ∈ (Poly‘ℝ)
5 plymul02 31930 . . . . . . 7 (Xp ∈ (Poly‘ℝ) → (0𝑝f · Xp) = 0𝑝)
65fveq2d 6653 . . . . . 6 (Xp ∈ (Poly‘ℝ) → (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝))
74, 6ax-mp 5 . . . . 5 (coeff‘(0𝑝f · Xp)) = (coeff‘0𝑝)
8 fconstmpt 5582 . . . . . 6 (ℕ0 × {0}) = (𝑛 ∈ ℕ0 ↦ 0)
9 coe0 24857 . . . . . 6 (coeff‘0𝑝) = (ℕ0 × {0})
10 eqidd 2802 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑛 = 0) → 0 = 0)
11 elnnne0 11903 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
12 df-ne 2991 . . . . . . . . . . . 12 (𝑛 ≠ 0 ↔ ¬ 𝑛 = 0)
1312anbi2i 625 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ≠ 0) ↔ (𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0))
1411, 13bitr2i 279 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) ↔ 𝑛 ∈ ℕ)
15 nnm1nn0 11930 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
1614, 15sylbi 220 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
17 eqidd 2802 . . . . . . . . . 10 (𝑚 = (𝑛 − 1) → 0 = 0)
18 fconstmpt 5582 . . . . . . . . . . 11 (ℕ0 × {0}) = (𝑚 ∈ ℕ0 ↦ 0)
199, 18eqtri 2824 . . . . . . . . . 10 (coeff‘0𝑝) = (𝑚 ∈ ℕ0 ↦ 0)
20 c0ex 10628 . . . . . . . . . 10 0 ∈ V
2117, 19, 20fvmpt 6749 . . . . . . . . 9 ((𝑛 − 1) ∈ ℕ0 → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2216, 21syl 17 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → ((coeff‘0𝑝)‘(𝑛 − 1)) = 0)
2310, 22ifeqda 4463 . . . . . . 7 (𝑛 ∈ ℕ0 → if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))) = 0)
2423mpteq2ia 5124 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ 0)
258, 9, 243eqtr4ri 2835 . . . . 5 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))) = (coeff‘0𝑝)
267, 25eqtr4i 2827 . . . 4 (coeff‘(0𝑝f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
27 fvoveq1 7162 . . . 4 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (coeff‘(0𝑝f · Xp)))
28 simpl 486 . . . . . . . 8 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → 𝐹 = 0𝑝)
2928fveq2d 6653 . . . . . . 7 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → (coeff‘𝐹) = (coeff‘0𝑝))
3029fveq1d 6651 . . . . . 6 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑛 − 1)) = ((coeff‘0𝑝)‘(𝑛 − 1)))
3130ifeq2d 4447 . . . . 5 ((𝐹 = 0𝑝𝑛 ∈ ℕ0) → if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1))) = if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1))))
3231mpteq2dva 5128 . . . 4 (𝐹 = 0𝑝 → (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘0𝑝)‘(𝑛 − 1)))))
3326, 27, 323eqtr4a 2862 . . 3 (𝐹 = 0𝑝 → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
3433adantl 485 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
35 simpl 486 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ (Poly‘ℝ))
36 elsng 4542 . . . . . 6 (𝐹 ∈ (Poly‘ℝ) → (𝐹 ∈ {0𝑝} ↔ 𝐹 = 0𝑝))
3736notbid 321 . . . . 5 (𝐹 ∈ (Poly‘ℝ) → (¬ 𝐹 ∈ {0𝑝} ↔ ¬ 𝐹 = 0𝑝))
3837biimpar 481 . . . 4 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → ¬ 𝐹 ∈ {0𝑝})
3935, 38eldifd 3895 . . 3 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → 𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}))
40 plymulx0 31931 . . 3 (𝐹 ∈ ((Poly‘ℝ) ∖ {0𝑝}) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4139, 40syl 17 . 2 ((𝐹 ∈ (Poly‘ℝ) ∧ ¬ 𝐹 = 0𝑝) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
4234, 41pm2.61dan 812 1 (𝐹 ∈ (Poly‘ℝ) → (coeff‘(𝐹f · Xp)) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, 0, ((coeff‘𝐹)‘(𝑛 − 1)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   ∖ cdif 3881   ⊆ wss 3884  ifcif 4428  {csn 4528   ↦ cmpt 5113   × cxp 5521  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535   − cmin 10863  ℕcn 11629  ℕ0cn0 11889  0𝑝c0p 24277  Polycply 24785  Xpcidp 24786  coeffccoe 24787 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-0p 24278  df-ply 24789  df-idp 24790  df-coe 24791  df-dgr 24792 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator