| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrf | Structured version Visualization version GIF version | ||
| Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrf | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrval 19361 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 3 | simpll2 1214 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ⊆ 𝐷) | |
| 4 | 1onn 8555 | . . . . . 6 ⊢ 1o ∈ ω | |
| 5 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) | |
| 6 | df-2o 8386 | . . . . . . 7 ⊢ 2o = suc 1o | |
| 7 | 5, 6 | breqtrdi 5132 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) | |
| 9 | dif1ennn 9072 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) | |
| 10 | 4, 7, 8, 9 | mp3an2i 1468 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
| 11 | en1uniel 8951 | . . . . 5 ⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) | |
| 12 | eldifi 4081 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) |
| 14 | 3, 13 | sseldd 3935 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝐷) |
| 15 | simplr 768 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ ¬ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝐷) | |
| 16 | 14, 15 | ifclda 4511 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷) |
| 17 | 2, 16 | fmpt3d 7049 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 ifcif 4475 {csn 4576 ∪ cuni 4859 class class class wbr 5091 suc csuc 6308 ⟶wf 6477 ‘cfv 6481 ωcom 7796 1oc1o 8378 2oc2o 8379 ≈ cen 8866 pmTrspcpmtr 19351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-pmtr 19352 |
| This theorem is referenced by: pmtrmvd 19366 pmtrfinv 19371 pmtrff1o 19373 pmtrfcnv 19374 pmtr3ncomlem1 19383 mdetralt 22521 mdetunilem7 22531 |
| Copyright terms: Public domain | W3C validator |