MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 19474
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . 3 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19470 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
3 simpll2 1213 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
4 1onn 8679 . . . . . 6 1o ∈ ω
5 simpll3 1214 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
6 df-2o 8508 . . . . . . 7 2o = suc 1o
75, 6breqtrdi 5183 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
8 simpr 484 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
9 dif1ennn 9202 . . . . . 6 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
104, 7, 8, 9mp3an2i 1467 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
11 en1uniel 9070 . . . . 5 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
12 eldifi 4130 . . . . 5 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
1310, 11, 123syl 18 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
143, 13sseldd 3983 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
15 simplr 768 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1614, 15ifclda 4560 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
172, 16fmpt3d 7135 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cdif 3947  wss 3950  ifcif 4524  {csn 4625   cuni 4906   class class class wbr 5142  suc csuc 6385  wf 6556  cfv 6560  ωcom 7888  1oc1o 8500  2oc2o 8501  cen 8983  pmTrspcpmtr 19460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1o 8507  df-2o 8508  df-en 8987  df-pmtr 19461
This theorem is referenced by:  pmtrmvd  19475  pmtrfinv  19480  pmtrff1o  19482  pmtrfcnv  19483  pmtr3ncomlem1  19492  mdetralt  22615  mdetunilem7  22625
  Copyright terms: Public domain W3C validator