MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 19441
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . 3 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19437 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
3 simpll2 1214 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
4 1onn 8657 . . . . . 6 1o ∈ ω
5 simpll3 1215 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
6 df-2o 8486 . . . . . . 7 2o = suc 1o
75, 6breqtrdi 5165 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
8 simpr 484 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
9 dif1ennn 9180 . . . . . 6 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
104, 7, 8, 9mp3an2i 1468 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
11 en1uniel 9048 . . . . 5 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
12 eldifi 4111 . . . . 5 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
1310, 11, 123syl 18 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
143, 13sseldd 3964 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
15 simplr 768 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1614, 15ifclda 4541 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
172, 16fmpt3d 7111 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3928  wss 3931  ifcif 4505  {csn 4606   cuni 4888   class class class wbr 5124  suc csuc 6359  wf 6532  cfv 6536  ωcom 7866  1oc1o 8478  2oc2o 8479  cen 8961  pmTrspcpmtr 19427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-2o 8486  df-en 8965  df-pmtr 19428
This theorem is referenced by:  pmtrmvd  19442  pmtrfinv  19447  pmtrff1o  19449  pmtrfcnv  19450  pmtr3ncomlem1  19459  mdetralt  22551  mdetunilem7  22561
  Copyright terms: Public domain W3C validator