| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrf | Structured version Visualization version GIF version | ||
| Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrf | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrval 19388 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 3 | simpll2 1214 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ⊆ 𝐷) | |
| 4 | 1onn 8607 | . . . . . 6 ⊢ 1o ∈ ω | |
| 5 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) | |
| 6 | df-2o 8438 | . . . . . . 7 ⊢ 2o = suc 1o | |
| 7 | 5, 6 | breqtrdi 5151 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) | |
| 9 | dif1ennn 9131 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) | |
| 10 | 4, 7, 8, 9 | mp3an2i 1468 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
| 11 | en1uniel 9003 | . . . . 5 ⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) | |
| 12 | eldifi 4097 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) |
| 14 | 3, 13 | sseldd 3950 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝐷) |
| 15 | simplr 768 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ ¬ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝐷) | |
| 16 | 14, 15 | ifclda 4527 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷) |
| 17 | 2, 16 | fmpt3d 7091 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ifcif 4491 {csn 4592 ∪ cuni 4874 class class class wbr 5110 suc csuc 6337 ⟶wf 6510 ‘cfv 6514 ωcom 7845 1oc1o 8430 2oc2o 8431 ≈ cen 8918 pmTrspcpmtr 19378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-en 8922 df-pmtr 19379 |
| This theorem is referenced by: pmtrmvd 19393 pmtrfinv 19398 pmtrff1o 19400 pmtrfcnv 19401 pmtr3ncomlem1 19410 mdetralt 22502 mdetunilem7 22512 |
| Copyright terms: Public domain | W3C validator |