| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtrf | Structured version Visualization version GIF version | ||
| Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| Ref | Expression |
|---|---|
| pmtrf | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | 1 | pmtrval 19348 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
| 3 | simpll2 1214 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ⊆ 𝐷) | |
| 4 | 1onn 8565 | . . . . . 6 ⊢ 1o ∈ ω | |
| 5 | simpll3 1215 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) | |
| 6 | df-2o 8396 | . . . . . . 7 ⊢ 2o = suc 1o | |
| 7 | 5, 6 | breqtrdi 5136 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) | |
| 9 | dif1ennn 9085 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) | |
| 10 | 4, 7, 8, 9 | mp3an2i 1468 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
| 11 | en1uniel 8961 | . . . . 5 ⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) | |
| 12 | eldifi 4084 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) |
| 14 | 3, 13 | sseldd 3938 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝐷) |
| 15 | simplr 768 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ ¬ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝐷) | |
| 16 | 14, 15 | ifclda 4514 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷) |
| 17 | 2, 16 | fmpt3d 7054 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ⊆ wss 3905 ifcif 4478 {csn 4579 ∪ cuni 4861 class class class wbr 5095 suc csuc 6313 ⟶wf 6482 ‘cfv 6486 ωcom 7806 1oc1o 8388 2oc2o 8389 ≈ cen 8876 pmTrspcpmtr 19338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-2o 8396 df-en 8880 df-pmtr 19339 |
| This theorem is referenced by: pmtrmvd 19353 pmtrfinv 19358 pmtrff1o 19360 pmtrfcnv 19361 pmtr3ncomlem1 19370 mdetralt 22511 mdetunilem7 22521 |
| Copyright terms: Public domain | W3C validator |