MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 19497
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . 3 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19493 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
3 simpll2 1213 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
4 1onn 8696 . . . . . 6 1o ∈ ω
5 simpll3 1214 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
6 df-2o 8523 . . . . . . 7 2o = suc 1o
75, 6breqtrdi 5207 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
8 simpr 484 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
9 dif1ennn 9227 . . . . . 6 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
104, 7, 8, 9mp3an2i 1466 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
11 en1uniel 9093 . . . . 5 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
12 eldifi 4154 . . . . 5 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
1310, 11, 123syl 18 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
143, 13sseldd 4009 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
15 simplr 768 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1614, 15ifclda 4583 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
172, 16fmpt3d 7150 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  ifcif 4548  {csn 4648   cuni 4931   class class class wbr 5166  suc csuc 6397  wf 6569  cfv 6573  ωcom 7903  1oc1o 8515  2oc2o 8516  cen 9000  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-pmtr 19484
This theorem is referenced by:  pmtrmvd  19498  pmtrfinv  19503  pmtrff1o  19505  pmtrfcnv  19506  pmtr3ncomlem1  19515  mdetralt  22635  mdetunilem7  22645
  Copyright terms: Public domain W3C validator