MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 18141
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpll2 1271 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
2 1onn 7926 . . . . . . . 8 1𝑜 ∈ ω
32a1i 11 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 1𝑜 ∈ ω)
4 simpll3 1273 . . . . . . . 8 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2𝑜)
5 df-2o 7767 . . . . . . . 8 2𝑜 = suc 1𝑜
64, 5syl6breq 4852 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1𝑜)
7 simpr 477 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
8 dif1en 8402 . . . . . . 7 ((1𝑜 ∈ ω ∧ 𝑃 ≈ suc 1𝑜𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
93, 6, 7, 8syl3anc 1490 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1𝑜)
10 en1uniel 8234 . . . . . 6 ((𝑃 ∖ {𝑧}) ≈ 1𝑜 (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
11 eldifi 3896 . . . . . 6 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
129, 10, 113syl 18 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
131, 12sseldd 3764 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
14 simplr 785 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1513, 14ifclda 4279 . . 3 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
1615fmpttd 6577 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)):𝐷𝐷)
17 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
1817pmtrval 18137 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
1918feq1d 6210 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → ((𝑇𝑃):𝐷𝐷 ↔ (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)):𝐷𝐷))
2016, 19mpbird 248 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cdif 3731  wss 3734  ifcif 4245  {csn 4336   cuni 4596   class class class wbr 4811  cmpt 4890  suc csuc 5912  wf 6066  cfv 6070  ωcom 7265  1𝑜c1o 7759  2𝑜c2o 7760  cen 8159  pmTrspcpmtr 18127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-om 7266  df-1o 7766  df-2o 7767  df-er 7949  df-en 8163  df-fin 8166  df-pmtr 18128
This theorem is referenced by:  pmtrmvd  18142  pmtrfinv  18147  pmtrff1o  18149  pmtrfcnv  18150  pmtr3ncomlem1  18159  mdetralt  20694  mdetunilem7  20704
  Copyright terms: Public domain W3C validator