MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 19245
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . 3 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19241 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
3 simpll2 1214 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
4 1onn 8590 . . . . . 6 1o ∈ ω
5 simpll3 1215 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
6 df-2o 8417 . . . . . . 7 2o = suc 1o
75, 6breqtrdi 5150 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
8 simpr 486 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
9 dif1ennn 9111 . . . . . 6 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
104, 7, 8, 9mp3an2i 1467 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
11 en1uniel 8978 . . . . 5 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
12 eldifi 4090 . . . . 5 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
1310, 11, 123syl 18 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
143, 13sseldd 3949 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
15 simplr 768 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1614, 15ifclda 4525 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
172, 16fmpt3d 7068 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cdif 3911  wss 3914  ifcif 4490  {csn 4590   cuni 4869   class class class wbr 5109  suc csuc 6323  wf 6496  cfv 6500  ωcom 7806  1oc1o 8409  2oc2o 8410  cen 8886  pmTrspcpmtr 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-2o 8417  df-en 8890  df-pmtr 19232
This theorem is referenced by:  pmtrmvd  19246  pmtrfinv  19251  pmtrff1o  19253  pmtrfcnv  19254  pmtr3ncomlem1  19263  mdetralt  21980  mdetunilem7  21990
  Copyright terms: Public domain W3C validator