![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrf | Structured version Visualization version GIF version |
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrf | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll2 1277 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ⊆ 𝐷) | |
2 | 1onn 7986 | . . . . . . . 8 ⊢ 1o ∈ ω | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 1o ∈ ω) |
4 | simpll3 1279 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) | |
5 | df-2o 7827 | . . . . . . . 8 ⊢ 2o = suc 1o | |
6 | 4, 5 | syl6breq 4914 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
7 | simpr 479 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) | |
8 | dif1en 8462 | . . . . . . 7 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) | |
9 | 3, 6, 7, 8 | syl3anc 1496 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
10 | en1uniel 8294 | . . . . . 6 ⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) | |
11 | eldifi 3959 | . . . . . 6 ⊢ (∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) | |
12 | 9, 10, 11 | 3syl 18 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) |
13 | 1, 12 | sseldd 3828 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝐷) |
14 | simplr 787 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ ¬ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝐷) | |
15 | 13, 14 | ifclda 4340 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷) |
16 | 15 | fmpttd 6634 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)):𝐷⟶𝐷) |
17 | pmtrfval.t | . . . 4 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
18 | 17 | pmtrval 18221 | . . 3 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
19 | 18 | feq1d 6263 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → ((𝑇‘𝑃):𝐷⟶𝐷 ↔ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)):𝐷⟶𝐷)) |
20 | 16, 19 | mpbird 249 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 ⊆ wss 3798 ifcif 4306 {csn 4397 ∪ cuni 4658 class class class wbr 4873 ↦ cmpt 4952 suc csuc 5965 ⟶wf 6119 ‘cfv 6123 ωcom 7326 1oc1o 7819 2oc2o 7820 ≈ cen 8219 pmTrspcpmtr 18211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-om 7327 df-1o 7826 df-2o 7827 df-er 8009 df-en 8223 df-fin 8226 df-pmtr 18212 |
This theorem is referenced by: pmtrmvd 18226 pmtrfinv 18231 pmtrff1o 18233 pmtrfcnv 18234 pmtr3ncomlem1 18243 mdetralt 20782 mdetunilem7 20792 |
Copyright terms: Public domain | W3C validator |