Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtrf | Structured version Visualization version GIF version |
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
pmtrfval.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
Ref | Expression |
---|---|
pmtrf | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrfval.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | 1 | pmtrval 19069 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃) = (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧))) |
3 | simpll2 1212 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ⊆ 𝐷) | |
4 | 1onn 8457 | . . . . . 6 ⊢ 1o ∈ ω | |
5 | simpll3 1213 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ 2o) | |
6 | df-2o 8285 | . . . . . . 7 ⊢ 2o = suc 1o | |
7 | 5, 6 | breqtrdi 5114 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc 1o) |
8 | simpr 485 | . . . . . 6 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) | |
9 | dif1en 8932 | . . . . . 6 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) | |
10 | 4, 7, 8, 9 | mp3an2i 1465 | . . . . 5 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o) |
11 | en1uniel 8805 | . . . . 5 ⊢ ((𝑃 ∖ {𝑧}) ≈ 1o → ∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) | |
12 | eldifi 4060 | . . . . 5 ⊢ (∪ (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝑃) |
14 | 3, 13 | sseldd 3921 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ∈ 𝐷) |
15 | simplr 766 | . . 3 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) ∧ ¬ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝐷) | |
16 | 14, 15 | ifclda 4494 | . 2 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝑧 ∈ 𝐷) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷) |
17 | 2, 16 | fmpt3d 6982 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) → (𝑇‘𝑃):𝐷⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∖ cdif 3883 ⊆ wss 3886 ifcif 4459 {csn 4561 ∪ cuni 4839 class class class wbr 5073 suc csuc 6261 ⟶wf 6422 ‘cfv 6426 ωcom 7702 1oc1o 8277 2oc2o 8278 ≈ cen 8717 pmTrspcpmtr 19059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-om 7703 df-1o 8284 df-2o 8285 df-en 8721 df-pmtr 19060 |
This theorem is referenced by: pmtrmvd 19074 pmtrfinv 19079 pmtrff1o 19081 pmtrfcnv 19082 pmtr3ncomlem1 19091 mdetralt 21767 mdetunilem7 21777 |
Copyright terms: Public domain | W3C validator |