MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrf Structured version   Visualization version   GIF version

Theorem pmtrf 19392
Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrf ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)

Proof of Theorem pmtrf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . 3 𝑇 = (pmTrsp‘𝐷)
21pmtrval 19388 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
3 simpll2 1214 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃𝐷)
4 1onn 8607 . . . . . 6 1o ∈ ω
5 simpll3 1215 . . . . . . 7 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ 2o)
6 df-2o 8438 . . . . . . 7 2o = suc 1o
75, 6breqtrdi 5151 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑃 ≈ suc 1o)
8 simpr 484 . . . . . 6 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → 𝑧𝑃)
9 dif1ennn 9131 . . . . . 6 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
104, 7, 8, 9mp3an2i 1468 . . . . 5 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ≈ 1o)
11 en1uniel 9003 . . . . 5 ((𝑃 ∖ {𝑧}) ≈ 1o (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}))
12 eldifi 4097 . . . . 5 ( (𝑃 ∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
1310, 11, 123syl 18 . . . 4 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝑃)
143, 13sseldd 3950 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ 𝑧𝑃) → (𝑃 ∖ {𝑧}) ∈ 𝐷)
15 simplr 768 . . 3 ((((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) ∧ ¬ 𝑧𝑃) → 𝑧𝐷)
1614, 15ifclda 4527 . 2 (((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) ∧ 𝑧𝐷) → if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧) ∈ 𝐷)
172, 16fmpt3d 7091 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2o) → (𝑇𝑃):𝐷𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  wss 3917  ifcif 4491  {csn 4592   cuni 4874   class class class wbr 5110  suc csuc 6337  wf 6510  cfv 6514  ωcom 7845  1oc1o 8430  2oc2o 8431  cen 8918  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-pmtr 19379
This theorem is referenced by:  pmtrmvd  19393  pmtrfinv  19398  pmtrff1o  19400  pmtrfcnv  19401  pmtr3ncomlem1  19410  mdetralt  22502  mdetunilem7  22512
  Copyright terms: Public domain W3C validator