MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eleq Structured version   Visualization version   GIF version

Theorem en2eleq 9432
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})

Proof of Theorem en2eleq
StepHypRef Expression
1 2onn 8262 . . . . . 6 2o ∈ ω
2 nnfi 8709 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . 5 2o ∈ Fin
4 enfi 8731 . . . . 5 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 261 . . . 4 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 485 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 simpl 486 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8261 . . . . . . . 8 1o ∈ ω
9 simpr 488 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8099 . . . . . . . . 9 2o = suc 1o
119, 10breqtrdi 5093 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1en 8748 . . . . . . . 8 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1463 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 8577 . . . . . . 7 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
1513, 14syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
16 eldifsn 4704 . . . . . 6 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1715, 16sylib 221 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1817simpld 498 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
197, 18prssd 4739 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃)
2017simprd 499 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
2120necomd 3069 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
22 pr2nelem 9428 . . . . 5 ((𝑋𝑃 (𝑃 ∖ {𝑋}) ∈ 𝑃𝑋 (𝑃 ∖ {𝑋})) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
237, 18, 21, 22syl3anc 1368 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
24 ensym 8554 . . . . 5 (𝑃 ≈ 2o → 2o𝑃)
2524adantl 485 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 2o𝑃)
26 entr 8557 . . . 4 (({𝑋, (𝑃 ∖ {𝑋})} ≈ 2o ∧ 2o𝑃) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
2723, 25, 26syl2anc 587 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
28 fisseneq 8726 . . 3 ((𝑃 ∈ Fin ∧ {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃 ∧ {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
296, 19, 27, 28syl3anc 1368 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
3029eqcomd 2830 1 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  cdif 3916  wss 3919  {csn 4550  {cpr 4552   cuni 4824   class class class wbr 5052  suc csuc 6180  ωcom 7574  1oc1o 8091  2oc2o 8092  cen 8502  Fincfn 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-om 7575  df-1o 8098  df-2o 8099  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509
This theorem is referenced by:  en2other2  9433  psgnunilem1  18621  cyc3genpmlem  30828
  Copyright terms: Public domain W3C validator