MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eleq Structured version   Visualization version   GIF version

Theorem en2eleq 10048
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})

Proof of Theorem en2eleq
StepHypRef Expression
1 2onn 8680 . . . . . 6 2o ∈ ω
2 nnfi 9207 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . 5 2o ∈ Fin
4 enfi 9227 . . . . 5 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 258 . . . 4 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 481 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 simpl 482 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8678 . . . . . . . 8 1o ∈ ω
9 simpr 484 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8507 . . . . . . . . 9 2o = suc 1o
119, 10breqtrdi 5184 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1ennn 9201 . . . . . . . 8 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1468 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 9069 . . . . . . 7 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
1513, 14syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
16 eldifsn 4786 . . . . . 6 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1715, 16sylib 218 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1817simpld 494 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
197, 18prssd 4822 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃)
2017simprd 495 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
2120necomd 2996 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
22 enpr2 10042 . . . . 5 ((𝑋𝑃 (𝑃 ∖ {𝑋}) ∈ 𝑃𝑋 (𝑃 ∖ {𝑋})) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
237, 18, 21, 22syl3anc 1373 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
24 ensym 9043 . . . . 5 (𝑃 ≈ 2o → 2o𝑃)
2524adantl 481 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 2o𝑃)
26 entr 9046 . . . 4 (({𝑋, (𝑃 ∖ {𝑋})} ≈ 2o ∧ 2o𝑃) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
2723, 25, 26syl2anc 584 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
28 fisseneq 9293 . . 3 ((𝑃 ∈ Fin ∧ {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃 ∧ {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
296, 19, 27, 28syl3anc 1373 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
3029eqcomd 2743 1 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  wss 3951  {csn 4626  {cpr 4628   cuni 4907   class class class wbr 5143  suc csuc 6386  ωcom 7887  1oc1o 8499  2oc2o 8500  cen 8982  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989
This theorem is referenced by:  en2other2  10049  psgnunilem1  19511  cyc3genpmlem  33171
  Copyright terms: Public domain W3C validator