Proof of Theorem en2eleq
Step | Hyp | Ref
| Expression |
1 | | 2onn 8472 |
. . . . . 6
⊢
2o ∈ ω |
2 | | nnfi 8950 |
. . . . . 6
⊢
(2o ∈ ω → 2o ∈
Fin) |
3 | 1, 2 | ax-mp 5 |
. . . . 5
⊢
2o ∈ Fin |
4 | | enfi 8973 |
. . . . 5
⊢ (𝑃 ≈ 2o →
(𝑃 ∈ Fin ↔
2o ∈ Fin)) |
5 | 3, 4 | mpbiri 257 |
. . . 4
⊢ (𝑃 ≈ 2o →
𝑃 ∈
Fin) |
6 | 5 | adantl 482 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ Fin) |
7 | | simpl 483 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) |
8 | | 1onn 8470 |
. . . . . . . 8
⊢
1o ∈ ω |
9 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈
2o) |
10 | | df-2o 8298 |
. . . . . . . . 9
⊢
2o = suc 1o |
11 | 9, 10 | breqtrdi 5115 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc
1o) |
12 | | dif1en 8945 |
. . . . . . . 8
⊢
((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) |
13 | 8, 11, 7, 12 | mp3an2i 1465 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
14 | | en1uniel 8818 |
. . . . . . 7
⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃
∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃
∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
16 | | eldifsn 4720 |
. . . . . 6
⊢ (∪ (𝑃
∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ (∪
(𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) |
17 | 15, 16 | sylib 217 |
. . . . 5
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (∪ (𝑃
∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃
∖ {𝑋}) ≠ 𝑋)) |
18 | 17 | simpld 495 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃
∖ {𝑋}) ∈ 𝑃) |
19 | 7, 18 | prssd 4755 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪
(𝑃 ∖ {𝑋})} ⊆ 𝑃) |
20 | 17 | simprd 496 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃
∖ {𝑋}) ≠ 𝑋) |
21 | 20 | necomd 2999 |
. . . . 5
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃
∖ {𝑋})) |
22 | | pr2nelem 9760 |
. . . . 5
⊢ ((𝑋 ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 2o) |
23 | 7, 18, 21, 22 | syl3anc 1370 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪
(𝑃 ∖ {𝑋})} ≈
2o) |
24 | | ensym 8789 |
. . . . 5
⊢ (𝑃 ≈ 2o →
2o ≈ 𝑃) |
25 | 24 | adantl 482 |
. . . 4
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 2o
≈ 𝑃) |
26 | | entr 8792 |
. . . 4
⊢ (({𝑋, ∪
(𝑃 ∖ {𝑋})} ≈ 2o ∧
2o ≈ 𝑃)
→ {𝑋, ∪ (𝑃
∖ {𝑋})} ≈ 𝑃) |
27 | 23, 25, 26 | syl2anc 584 |
. . 3
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪
(𝑃 ∖ {𝑋})} ≈ 𝑃) |
28 | | fisseneq 9034 |
. . 3
⊢ ((𝑃 ∈ Fin ∧ {𝑋, ∪
(𝑃 ∖ {𝑋})} ⊆ 𝑃 ∧ {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 𝑃) → {𝑋, ∪ (𝑃 ∖ {𝑋})} = 𝑃) |
29 | 6, 19, 27, 28 | syl3anc 1370 |
. 2
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪
(𝑃 ∖ {𝑋})} = 𝑃) |
30 | 29 | eqcomd 2744 |
1
⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |