![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2eleq | Structured version Visualization version GIF version |
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2eleq | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2onn 8643 | . . . . . 6 ⊢ 2o ∈ ω | |
2 | nnfi 9169 | . . . . . 6 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2o ∈ Fin |
4 | enfi 9192 | . . . . 5 ⊢ (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin)) | |
5 | 3, 4 | mpbiri 257 | . . . 4 ⊢ (𝑃 ≈ 2o → 𝑃 ∈ Fin) |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ∈ Fin) |
7 | simpl 483 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
8 | 1onn 8641 | . . . . . . . 8 ⊢ 1o ∈ ω | |
9 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
10 | df-2o 8469 | . . . . . . . . 9 ⊢ 2o = suc 1o | |
11 | 9, 10 | breqtrdi 5189 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
12 | dif1ennn 9163 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
13 | 8, 11, 7, 12 | mp3an2i 1466 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
14 | en1uniel 9030 | . . . . . . 7 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) |
16 | eldifsn 4790 | . . . . . 6 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋)) |
18 | 17 | simpld 495 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃) |
19 | 7, 18 | prssd 4825 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ⊆ 𝑃) |
20 | 17 | simprd 496 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
21 | 20 | necomd 2996 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
22 | enpr2 9999 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ ∪ (𝑃 ∖ {𝑋}) ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 2o) | |
23 | 7, 18, 21, 22 | syl3anc 1371 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 2o) |
24 | ensym 9001 | . . . . 5 ⊢ (𝑃 ≈ 2o → 2o ≈ 𝑃) | |
25 | 24 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 2o ≈ 𝑃) |
26 | entr 9004 | . . . 4 ⊢ (({𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 2o ∧ 2o ≈ 𝑃) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 𝑃) | |
27 | 23, 25, 26 | syl2anc 584 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 𝑃) |
28 | fisseneq 9259 | . . 3 ⊢ ((𝑃 ∈ Fin ∧ {𝑋, ∪ (𝑃 ∖ {𝑋})} ⊆ 𝑃 ∧ {𝑋, ∪ (𝑃 ∖ {𝑋})} ≈ 𝑃) → {𝑋, ∪ (𝑃 ∖ {𝑋})} = 𝑃) | |
29 | 6, 19, 27, 28 | syl3anc 1371 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋, ∪ (𝑃 ∖ {𝑋})} = 𝑃) |
30 | 29 | eqcomd 2738 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 {cpr 4630 ∪ cuni 4908 class class class wbr 5148 suc csuc 6366 ωcom 7857 1oc1o 8461 2oc2o 8462 ≈ cen 8938 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1o 8468 df-2o 8469 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: en2other2 10006 psgnunilem1 19363 cyc3genpmlem 32351 |
Copyright terms: Public domain | W3C validator |