MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eleq Structured version   Visualization version   GIF version

Theorem en2eleq 9899
Description: Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2eleq ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})

Proof of Theorem en2eleq
StepHypRef Expression
1 2onn 8557 . . . . . 6 2o ∈ ω
2 nnfi 9077 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . 5 2o ∈ Fin
4 enfi 9096 . . . . 5 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 258 . . . 4 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 481 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 simpl 482 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8555 . . . . . . . 8 1o ∈ ω
9 simpr 484 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8386 . . . . . . . . 9 2o = suc 1o
119, 10breqtrdi 5132 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1ennn 9072 . . . . . . . 8 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1468 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 8951 . . . . . . 7 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
1513, 14syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
16 eldifsn 4738 . . . . . 6 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) ↔ ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1715, 16sylib 218 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → ( (𝑃 ∖ {𝑋}) ∈ 𝑃 (𝑃 ∖ {𝑋}) ≠ 𝑋))
1817simpld 494 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ 𝑃)
197, 18prssd 4774 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃)
2017simprd 495 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
2120necomd 2983 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
22 enpr2 9895 . . . . 5 ((𝑋𝑃 (𝑃 ∖ {𝑋}) ∈ 𝑃𝑋 (𝑃 ∖ {𝑋})) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
237, 18, 21, 22syl3anc 1373 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 2o)
24 ensym 8925 . . . . 5 (𝑃 ≈ 2o → 2o𝑃)
2524adantl 481 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → 2o𝑃)
26 entr 8928 . . . 4 (({𝑋, (𝑃 ∖ {𝑋})} ≈ 2o ∧ 2o𝑃) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
2723, 25, 26syl2anc 584 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃)
28 fisseneq 9147 . . 3 ((𝑃 ∈ Fin ∧ {𝑋, (𝑃 ∖ {𝑋})} ⊆ 𝑃 ∧ {𝑋, (𝑃 ∖ {𝑋})} ≈ 𝑃) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
296, 19, 27, 28syl3anc 1373 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋, (𝑃 ∖ {𝑋})} = 𝑃)
3029eqcomd 2737 1 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  wss 3902  {csn 4576  {cpr 4578   cuni 4859   class class class wbr 5091  suc csuc 6308  ωcom 7796  1oc1o 8378  2oc2o 8379  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  en2other2  9900  psgnunilem1  19406  cyc3genpmlem  33118
  Copyright terms: Public domain W3C validator