MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdvds Structured version   Visualization version   GIF version

Theorem hashdvds 16812
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1 (𝜑𝑁 ∈ ℕ)
hashdvds.2 (𝜑𝐴 ∈ ℤ)
hashdvds.3 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
hashdvds.4 (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
hashdvds (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem hashdvds
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12648 . . . . . 6 (𝜑 → 1 ∈ ℤ)
2 hashdvds.3 . . . . . . . . . . . 12 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
3 eluzelz 12888 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → 𝐵 ∈ ℤ)
42, 3syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
5 hashdvds.4 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
64, 5zsubcld 12727 . . . . . . . . . 10 (𝜑 → (𝐵𝐶) ∈ ℤ)
76zred 12722 . . . . . . . . 9 (𝜑 → (𝐵𝐶) ∈ ℝ)
8 hashdvds.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
97, 8nndivred 12320 . . . . . . . 8 (𝜑 → ((𝐵𝐶) / 𝑁) ∈ ℝ)
109flcld 13838 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
11 hashdvds.2 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
12 peano2zm 12660 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴 − 1) ∈ ℤ)
1413, 5zsubcld 12727 . . . . . . . . . 10 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ)
1514zred 12722 . . . . . . . . 9 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ)
1615, 8nndivred 12320 . . . . . . . 8 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ)
1716flcld 13838 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ)
1810, 17zsubcld 12727 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ)
19 fzen 13581 . . . . . 6 ((1 ∈ ℤ ∧ ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
201, 18, 17, 19syl3anc 1373 . . . . 5 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
21 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
2217zcnd 12723 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ)
23 addcom 11447 . . . . . . 7 ((1 ∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2421, 22, 23sylancr 587 . . . . . 6 (𝜑 → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2510zcnd 12723 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℂ)
2625, 22npcand 11624 . . . . . 6 (𝜑 → (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵𝐶) / 𝑁)))
2724, 26oveq12d 7449 . . . . 5 (𝜑 → ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
2820, 27breqtrd 5169 . . . 4 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
29 ovexd 7466 . . . . 5 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∈ V)
30 fzfi 14013 . . . . . 6 (𝐴...𝐵) ∈ Fin
31 rabexg 5337 . . . . . 6 ((𝐴...𝐵) ∈ Fin → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ V)
3230, 31mp1i 13 . . . . 5 (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ V)
33 oveq1 7438 . . . . . . . 8 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶))
3433breq2d 5155 . . . . . . 7 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)))
3511adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ∈ ℤ)
364adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℤ)
37 elfzelz 13564 . . . . . . . . . . 11 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ∈ ℤ)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℤ)
398nnzd 12640 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
4039adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∈ ℤ)
4138, 40zmulcld 12728 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ)
425adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℤ)
4341, 42zaddcld 12726 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ)
44 elfzle1 13567 . . . . . . . . . . . . . 14 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
4544adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
46 zltp1le 12667 . . . . . . . . . . . . . 14 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
4717, 37, 46syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
4845, 47mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)
49 fllt 13846 . . . . . . . . . . . . 13 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
5016, 37, 49syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
5148, 50mpbird 257 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧)
5215adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
5338zred 12722 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℝ)
548nnred 12281 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
558nngt0d 12315 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
5654, 55jca 511 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
5756adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
58 ltdivmul2 12145 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
5952, 53, 57, 58syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
6051, 59mpbid 232 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))
6113zred 12722 . . . . . . . . . . . 12 (𝜑 → (𝐴 − 1) ∈ ℝ)
6261adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ)
635zred 12722 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
6463adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℝ)
6541zred 12722 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ)
6662, 64, 65ltsubaddd 11859 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
6760, 66mpbid 232 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))
68 zlem1lt 12669 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
6911, 43, 68syl2an2r 685 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
7067, 69mpbird 257 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶))
71 elfzle2 13568 . . . . . . . . . . . 12 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
7271adantl 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
73 flge 13845 . . . . . . . . . . . 12 ((((𝐵𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
749, 37, 73syl2an 596 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
7572, 74mpbird 257 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵𝐶) / 𝑁))
767adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐵𝐶) ∈ ℝ)
77 lemuldiv 12148 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
7853, 76, 57, 77syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
7975, 78mpbird 257 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵𝐶))
804zred 12722 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
8180adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℝ)
82 leaddsub 11739 . . . . . . . . . 10 (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
8365, 64, 81, 82syl3anc 1373 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
8479, 83mpbird 257 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)
8535, 36, 43, 70, 84elfzd 13555 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵))
86 dvdsmul2 16316 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁))
8738, 40, 86syl2anc 584 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁))
8841zcnd 12723 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ)
895zcnd 12723 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
9089adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℂ)
9188, 90pncand 11621 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁))
9287, 91breqtrrd 5171 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))
9334, 85, 92elrabd 3694 . . . . . 6 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
9493ex 412 . . . . 5 (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
95 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
9695breq2d 5155 . . . . . . 7 (𝑥 = 𝑦 → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (𝑦𝐶)))
9796elrab 3692 . . . . . 6 (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))
9817peano2zd 12725 . . . . . . . . 9 (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
9998adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
10010adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
101 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∥ (𝑦𝐶))
10239adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∈ ℤ)
1038nnne0d 12316 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
104103adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ≠ 0)
105 elfzelz 13564 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
106105ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℤ)
1075adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℤ)
108106, 107zsubcld 12727 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℤ)
109 dvdsval2 16293 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
110102, 104, 108, 109syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
111101, 110mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ ℤ)
11261adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) ∈ ℝ)
113106zred 12722 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℝ)
11463adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℝ)
115 elfzle1 13567 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴...𝐵) → 𝐴𝑦)
116115ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐴𝑦)
117 zlem1lt 12669 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
11811, 106, 117syl2an2r 685 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
119116, 118mpbid 232 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) < 𝑦)
120112, 113, 114, 119ltsub1dd 11875 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦𝐶))
12115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
122108zred 12722 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℝ)
12356adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
124 ltdiv1 12132 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
125121, 122, 123, 124syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
126120, 125mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁))
127 fllt 13846 . . . . . . . . . . 11 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
12816, 111, 127syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
129126, 128mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁))
130 zltp1le 12667 . . . . . . . . . 10 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
13117, 111, 130syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
132129, 131mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁))
13380adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐵 ∈ ℝ)
134 elfzle2 13568 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴...𝐵) → 𝑦𝐵)
135134ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦𝐵)
136113, 133, 114, 135lesub1dd 11879 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ≤ (𝐵𝐶))
1377adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐵𝐶) ∈ ℝ)
138 lediv1 12133 . . . . . . . . . . 11 (((𝑦𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
139122, 137, 123, 138syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
140136, 139mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
141 flge 13845 . . . . . . . . . 10 ((((𝐵𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
1429, 111, 141syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
143140, 142mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))
14499, 100, 111, 132, 143elfzd 13555 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
145144ex 412 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
14697, 145biimtrid 242 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
14797anbi2i 623 . . . . . . 7 ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))))
148108zcnd 12723 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℂ)
149148adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑦𝐶) ∈ ℂ)
15038zcnd 12723 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℂ)
151150adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑧 ∈ ℂ)
1528nncnd 12282 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
153152adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 ∈ ℂ)
154103adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 ≠ 0)
155149, 151, 153, 154divmul3d 12077 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ (𝑦𝐶) = (𝑧 · 𝑁)))
156106zcnd 12723 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℂ)
157156adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑦 ∈ ℂ)
15889adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝐶 ∈ ℂ)
15988adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 · 𝑁) ∈ ℂ)
160157, 158, 159subadd2d 11639 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → ((𝑦𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
161155, 160bitrd 279 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
162 eqcom 2744 . . . . . . . 8 (𝑧 = ((𝑦𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) = 𝑧)
163 eqcom 2744 . . . . . . . 8 (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)
164161, 162, 1633bitr4g 314 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
165147, 164sylan2b 594 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
166165ex 412 . . . . 5 (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))))
16729, 32, 94, 146, 166en3d 9029 . . . 4 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
168 entr 9046 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
16928, 167, 168syl2anc 584 . . 3 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
170 fzfi 14013 . . . 4 (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin
171 ssrab2 4080 . . . . 5 {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ⊆ (𝐴...𝐵)
172 ssfi 9213 . . . . 5 (((𝐴...𝐵) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ⊆ (𝐴...𝐵)) → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin)
17330, 171, 172mp2an 692 . . . 4 {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin
174 hashen 14386 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin) → ((♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
175170, 173, 174mp2an 692 . . 3 ((♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
176169, 175sylibr 234 . 2 (𝜑 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
177 eluzle 12891 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵)
1782, 177syl 17 . . . . . 6 (𝜑 → (𝐴 − 1) ≤ 𝐵)
179 zre 12617 . . . . . . . 8 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∈ ℝ)
180 zre 12617 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
181 zre 12617 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
182 lesub1 11757 . . . . . . . 8 (((𝐴 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
183179, 180, 181, 182syl3an 1161 . . . . . . 7 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
18413, 4, 5, 183syl3anc 1373 . . . . . 6 (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
185178, 184mpbid 232 . . . . 5 (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶))
186 lediv1 12133 . . . . . 6 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
18715, 7, 56, 186syl3anc 1373 . . . . 5 (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
188185, 187mpbid 232 . . . 4 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
189 flword2 13853 . . . 4 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝐵𝐶) / 𝑁) ∈ ℝ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
19016, 9, 188, 189syl3anc 1373 . . 3 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
191 uznn0sub 12917 . . 3 ((⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0)
192 hashfz1 14385 . . 3 (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
193190, 191, 1923syl 18 . 2 (𝜑 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
194176, 193eqtr3d 2779 1 (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cen 8982  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cfl 13830  chash 14369  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fl 13832  df-hash 14370  df-dvds 16291
This theorem is referenced by:  phiprmpw  16813  prmreclem4  16957  ppiub  27248  hashnzfz  44339
  Copyright terms: Public domain W3C validator