| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 12648 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 2 | | hashdvds.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) |
| 3 | | eluzelz 12888 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → 𝐵 ∈ ℤ) |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 5 | | hashdvds.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 6 | 4, 5 | zsubcld 12727 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℤ) |
| 7 | 6 | zred 12722 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℝ) |
| 8 | | hashdvds.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 7, 8 | nndivred 12320 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 − 𝐶) / 𝑁) ∈ ℝ) |
| 10 | 9 | flcld 13838 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 11 | | hashdvds.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 12 | | peano2zm 12660 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 − 1) ∈ ℤ) |
| 14 | 13, 5 | zsubcld 12727 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ) |
| 15 | 14 | zred 12722 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 16 | 15, 8 | nndivred 12320 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℝ) |
| 17 | 16 | flcld 13838 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) |
| 18 | 10, 17 | zsubcld 12727 |
. . . . . 6
⊢ (𝜑 → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ) |
| 19 | | fzen 13581 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)) ∈ ℤ) →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 20 | 1, 18, 17, 19 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 21 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 22 | 17 | zcnd 12723 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) |
| 23 | | addcom 11447 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 24 | 21, 22, 23 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 25 | 10 | zcnd 12723 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℂ) |
| 26 | 25, 22 | npcand 11624 |
. . . . . 6
⊢ (𝜑 → (((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 27 | 24, 26 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 28 | 20, 27 | breqtrd 5169 |
. . . 4
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁)))) |
| 29 | | ovexd 7466 |
. . . . 5
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∈ V) |
| 30 | | fzfi 14013 |
. . . . . 6
⊢ (𝐴...𝐵) ∈ Fin |
| 31 | | rabexg 5337 |
. . . . . 6
⊢ ((𝐴...𝐵) ∈ Fin → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ V) |
| 32 | 30, 31 | mp1i 13 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ V) |
| 33 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥 − 𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 34 | 33 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))) |
| 35 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ∈ ℤ) |
| 36 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℤ) |
| 37 | | elfzelz 13564 |
. . . . . . . . . . 11
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ∈ ℤ) |
| 38 | 37 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℤ) |
| 39 | 8 | nnzd 12640 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∈ ℤ) |
| 41 | 38, 40 | zmulcld 12728 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ) |
| 42 | 5 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℤ) |
| 43 | 41, 42 | zaddcld 12726 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) |
| 44 | | elfzle1 13567 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) + 1) ≤ 𝑧) |
| 45 | 44 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧) |
| 46 | | zltp1le 12667 |
. . . . . . . . . . . . . 14
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 47 | 17, 37, 46 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 48 | 45, 47 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧) |
| 49 | | fllt 13846 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) →
((((𝐴 − 1) −
𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 50 | 16, 37, 49 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 51 | 48, 50 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧) |
| 52 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 53 | 38 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℝ) |
| 54 | 8 | nnred 12281 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 55 | 8 | nngt0d 12315 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
| 56 | 54, 55 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 57 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 58 | | ltdivmul2 12145 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 59 | 52, 53, 57, 58 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 60 | 51, 59 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)) |
| 61 | 13 | zred 12722 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ) |
| 63 | 5 | zred 12722 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 64 | 63 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℝ) |
| 65 | 41 | zred 12722 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ) |
| 66 | 62, 64, 65 | ltsubaddd 11859 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 67 | 60, 66 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)) |
| 68 | | zlem1lt 12669 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 69 | 11, 43, 68 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 70 | 67, 69 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶)) |
| 71 | | elfzle2 13568 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 73 | | flge 13845 |
. . . . . . . . . . . 12
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 74 | 9, 37, 73 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 75 | 72, 74 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 76 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐵 − 𝐶) ∈ ℝ) |
| 77 | | lemuldiv 12148 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 78 | 53, 76, 57, 77 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 79 | 75, 78 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵 − 𝐶)) |
| 80 | 4 | zred 12722 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℝ) |
| 82 | | leaddsub 11739 |
. . . . . . . . . 10
⊢ (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 83 | 65, 64, 81, 82 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 84 | 79, 83 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵) |
| 85 | 35, 36, 43, 70, 84 | elfzd 13555 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵)) |
| 86 | | dvdsmul2 16316 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 87 | 38, 40, 86 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 88 | 41 | zcnd 12723 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 89 | 5 | zcnd 12723 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 90 | 89 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℂ) |
| 91 | 88, 90 | pncand 11621 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁)) |
| 92 | 87, 91 | breqtrrd 5171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 93 | 34, 85, 92 | elrabd 3694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 94 | 93 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 95 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 − 𝐶) = (𝑦 − 𝐶)) |
| 96 | 95 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (𝑦 − 𝐶))) |
| 97 | 96 | elrab 3692 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) |
| 98 | 17 | peano2zd 12725 |
. . . . . . . . 9
⊢ (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 99 | 98 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 100 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 101 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∥ (𝑦 − 𝐶)) |
| 102 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∈ ℤ) |
| 103 | 8 | nnne0d 12316 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ≠ 0) |
| 104 | 103 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ≠ 0) |
| 105 | | elfzelz 13564 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ) |
| 106 | 105 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℤ) |
| 107 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℤ) |
| 108 | 106, 107 | zsubcld 12727 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℤ) |
| 109 | | dvdsval2 16293 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦 − 𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 110 | 102, 104,
108, 109 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 111 | 101, 110 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) |
| 112 | 61 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) ∈ ℝ) |
| 113 | 106 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℝ) |
| 114 | 63 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℝ) |
| 115 | | elfzle1 13567 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝐴 ≤ 𝑦) |
| 116 | 115 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐴 ≤ 𝑦) |
| 117 | | zlem1lt 12669 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 118 | 11, 106, 117 | syl2an2r 685 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 119 | 116, 118 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) < 𝑦) |
| 120 | 112, 113,
114, 119 | ltsub1dd 11875 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶)) |
| 121 | 15 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 122 | 108 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℝ) |
| 123 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 124 | | ltdiv1 12132 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 125 | 121, 122,
123, 124 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 126 | 120, 125 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁)) |
| 127 | | fllt 13846 |
. . . . . . . . . . 11
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 128 | 16, 111, 127 | syl2an2r 685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 129 | 126, 128 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁)) |
| 130 | | zltp1le 12667 |
. . . . . . . . . 10
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 131 | 17, 111, 130 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 132 | 129, 131 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁)) |
| 133 | 80 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐵 ∈ ℝ) |
| 134 | | elfzle2 13568 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ≤ 𝐵) |
| 135 | 134 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ≤ 𝐵) |
| 136 | 113, 133,
114, 135 | lesub1dd 11879 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ≤ (𝐵 − 𝐶)) |
| 137 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐵 − 𝐶) ∈ ℝ) |
| 138 | | lediv1 12133 |
. . . . . . . . . . 11
⊢ (((𝑦 − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 139 | 122, 137,
123, 138 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 140 | 136, 139 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 141 | | flge 13845 |
. . . . . . . . . 10
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 142 | 9, 111, 141 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 143 | 140, 142 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 144 | 99, 100, 111, 132, 143 | elfzd 13555 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 145 | 144 | ex 412 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 146 | 97, 145 | biimtrid 242 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 147 | 97 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) |
| 148 | 108 | zcnd 12723 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℂ) |
| 149 | 148 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑦 − 𝐶) ∈ ℂ) |
| 150 | 38 | zcnd 12723 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℂ) |
| 151 | 150 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑧 ∈ ℂ) |
| 152 | 8 | nncnd 12282 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 153 | 152 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 ∈ ℂ) |
| 154 | 103 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 ≠ 0) |
| 155 | 149, 151,
153, 154 | divmul3d 12077 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ (𝑦 − 𝐶) = (𝑧 · 𝑁))) |
| 156 | 106 | zcnd 12723 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℂ) |
| 157 | 156 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑦 ∈ ℂ) |
| 158 | 89 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝐶 ∈ ℂ) |
| 159 | 88 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 160 | 157, 158,
159 | subadd2d 11639 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → ((𝑦 − 𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 161 | 155, 160 | bitrd 279 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 162 | | eqcom 2744 |
. . . . . . . 8
⊢ (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) = 𝑧) |
| 163 | | eqcom 2744 |
. . . . . . . 8
⊢ (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦) |
| 164 | 161, 162,
163 | 3bitr4g 314 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 165 | 147, 164 | sylan2b 594 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 166 | 165 | ex 412 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))) |
| 167 | 29, 32, 94, 146, 166 | en3d 9029 |
. . . 4
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 168 | | entr 9046 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 169 | 28, 167, 168 | syl2anc 584 |
. . 3
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 170 | | fzfi 14013 |
. . . 4
⊢
(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin |
| 171 | | ssrab2 4080 |
. . . . 5
⊢ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ⊆ (𝐴...𝐵) |
| 172 | | ssfi 9213 |
. . . . 5
⊢ (((𝐴...𝐵) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ⊆ (𝐴...𝐵)) → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) |
| 173 | 30, 171, 172 | mp2an 692 |
. . . 4
⊢ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin |
| 174 | | hashen 14386 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) →
((♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 175 | 170, 173,
174 | mp2an 692 |
. . 3
⊢
((♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 176 | 169, 175 | sylibr 234 |
. 2
⊢ (𝜑 →
(♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 177 | | eluzle 12891 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵) |
| 178 | 2, 177 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 − 1) ≤ 𝐵) |
| 179 | | zre 12617 |
. . . . . . . 8
⊢ ((𝐴 − 1) ∈ ℤ
→ (𝐴 − 1) ∈
ℝ) |
| 180 | | zre 12617 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℝ) |
| 181 | | zre 12617 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℝ) |
| 182 | | lesub1 11757 |
. . . . . . . 8
⊢ (((𝐴 − 1) ∈ ℝ ∧
𝐵 ∈ ℝ ∧
𝐶 ∈ ℝ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 183 | 179, 180,
181, 182 | syl3an 1161 |
. . . . . . 7
⊢ (((𝐴 − 1) ∈ ℤ ∧
𝐵 ∈ ℤ ∧
𝐶 ∈ ℤ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 184 | 13, 4, 5, 183 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 185 | 178, 184 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶)) |
| 186 | | lediv1 12133 |
. . . . . 6
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 187 | 15, 7, 56, 186 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 188 | 185, 187 | mpbid 232 |
. . . 4
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 189 | | flword2 13853 |
. . . 4
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℝ ∧ ((𝐵 − 𝐶) / 𝑁) ∈ ℝ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 190 | 16, 9, 188, 189 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 191 | | uznn0sub 12917 |
. . 3
⊢
((⌊‘((𝐵
− 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈
ℕ0) |
| 192 | | hashfz1 14385 |
. . 3
⊢
(((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) ∈ ℕ0
→ (♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 193 | 190, 191,
192 | 3syl 18 |
. 2
⊢ (𝜑 →
(♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 194 | 176, 193 | eqtr3d 2779 |
1
⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |