MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp Structured version   Visualization version   GIF version

Theorem qusgrp 18986
Description: If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusgrp (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem qusgrp
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 eqidd 2738 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
4 eqidd 2738 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 nsgsubg 18961 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2737 . . . . 5 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
86, 7eqger 18981 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
95, 8syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
10 subgrcl 18934 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
115, 10syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
136, 7, 12eqgcpbl 18985 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g𝐺)𝑑)))
146, 12grpcl 18757 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
1511, 14syl3an1 1164 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
169adantr 482 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
1711adantr 482 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
18 simpr1 1195 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
19 simpr2 1196 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
2017, 18, 19, 14syl3anc 1372 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
21 simpr3 1197 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺))
226, 12grpcl 18757 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2317, 20, 21, 22syl3anc 1372 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2416, 23erref 8669 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤))
256, 12grpass 18758 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2611, 25sylan 581 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2724, 26breqtrd 5132 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
28 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
296, 28grpidcl 18779 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
3011, 29syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐺) ∈ (Base‘𝐺))
316, 12, 28grplid 18781 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
3211, 31sylan 581 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
339adantr 482 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
34 simpr 486 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺))
3533, 34erref 8669 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢)
3632, 35eqbrtrd 5128 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢)
37 eqid 2737 . . . . 5 (invg𝐺) = (invg𝐺)
386, 37grpinvcl 18799 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
3911, 38sylan 581 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
406, 12, 28, 37grplinv 18801 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4111, 40sylan 581 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4230adantr 482 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
4333, 42erref 8669 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺)(𝐺 ~QG 𝑆)(0g𝐺))
4441, 43eqbrtrd 5128 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)(0g𝐺))
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 18866 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧ [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻)))
4645simpld 496 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cfv 6497  (class class class)co 7358   Er wer 8646  [cec 8647  Basecbs 17084  +gcplusg 17134  0gc0g 17322   /s cqus 17388  Grpcgrp 18749  invgcminusg 18750  SubGrpcsubg 18923  NrmSGrpcnsg 18924   ~QG cqg 18925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8649  df-ec 8651  df-qs 8655  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-3 12218  df-4 12219  df-5 12220  df-6 12221  df-7 12222  df-8 12223  df-9 12224  df-n0 12415  df-z 12501  df-dec 12620  df-uz 12765  df-fz 13426  df-struct 17020  df-sets 17037  df-slot 17055  df-ndx 17067  df-base 17085  df-ress 17114  df-plusg 17147  df-mulr 17148  df-sca 17150  df-vsca 17151  df-ip 17152  df-tset 17153  df-ple 17154  df-ds 17156  df-0g 17324  df-imas 17391  df-qus 17392  df-mgm 18498  df-sgrp 18547  df-mnd 18558  df-grp 18752  df-minusg 18753  df-subg 18926  df-nsg 18927  df-eqg 18928
This theorem is referenced by:  qus0  18989  qusinv  18990  qusghm  19046  qusabl  19644  rzgrp  21030  qustgplem  23475  nsgqusf1olem1  32194  ghmqusker  32201
  Copyright terms: Public domain W3C validator