MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp Structured version   Visualization version   GIF version

Theorem qusgrp 18318
Description: If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusgrp (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem qusgrp
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 eqidd 2822 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
4 eqidd 2822 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 nsgsubg 18293 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2821 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2821 . . . . 5 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
86, 7eqger 18313 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
95, 8syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
10 subgrcl 18267 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
115, 10syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2821 . . . 4 (+g𝐺) = (+g𝐺)
136, 7, 12eqgcpbl 18317 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g𝐺)𝑑)))
146, 12grpcl 18094 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
1511, 14syl3an1 1159 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
169adantr 483 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
1711adantr 483 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
18 simpr1 1190 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
19 simpr2 1191 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
2017, 18, 19, 14syl3anc 1367 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
21 simpr3 1192 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺))
226, 12grpcl 18094 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2317, 20, 21, 22syl3anc 1367 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2416, 23erref 8295 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤))
256, 12grpass 18095 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2611, 25sylan 582 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2724, 26breqtrd 5078 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
28 eqid 2821 . . . . 5 (0g𝐺) = (0g𝐺)
296, 28grpidcl 18114 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
3011, 29syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐺) ∈ (Base‘𝐺))
316, 12, 28grplid 18116 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
3211, 31sylan 582 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
339adantr 483 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
34 simpr 487 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺))
3533, 34erref 8295 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢)
3632, 35eqbrtrd 5074 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢)
37 eqid 2821 . . . . 5 (invg𝐺) = (invg𝐺)
386, 37grpinvcl 18134 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
3911, 38sylan 582 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
406, 12, 28, 37grplinv 18135 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4111, 40sylan 582 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4230adantr 483 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
4333, 42erref 8295 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺)(𝐺 ~QG 𝑆)(0g𝐺))
4441, 43eqbrtrd 5074 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)(0g𝐺))
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 18200 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧ [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻)))
4645simpld 497 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6341  (class class class)co 7142   Er wer 8272  [cec 8273  Basecbs 16466  +gcplusg 16548  0gc0g 16696   /s cqus 16761  Grpcgrp 18086  invgcminusg 18087  SubGrpcsubg 18256  NrmSGrpcnsg 18257   ~QG cqg 18258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-ec 8277  df-qs 8281  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-inf 8893  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-ip 16566  df-tset 16567  df-ple 16568  df-ds 16570  df-0g 16698  df-imas 16764  df-qus 16765  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-grp 18089  df-minusg 18090  df-subg 18259  df-nsg 18260  df-eqg 18261
This theorem is referenced by:  qus0  18321  qusinv  18322  qusghm  18378  qusabl  18968  rzgrp  20750  qustgplem  22712
  Copyright terms: Public domain W3C validator