MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp Structured version   Visualization version   GIF version

Theorem qusgrp 19059
Description: If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusgrp (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem qusgrp
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 eqidd 2733 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
4 eqidd 2733 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 nsgsubg 19032 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2732 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2732 . . . . 5 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
86, 7eqger 19052 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
95, 8syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
10 subgrcl 19005 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
115, 10syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2732 . . . 4 (+g𝐺) = (+g𝐺)
136, 7, 12eqgcpbl 19056 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g𝐺)𝑑)))
146, 12grpcl 18823 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
1511, 14syl3an1 1163 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
169adantr 481 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
1711adantr 481 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
18 simpr1 1194 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
19 simpr2 1195 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
2017, 18, 19, 14syl3anc 1371 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
21 simpr3 1196 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺))
226, 12grpcl 18823 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2317, 20, 21, 22syl3anc 1371 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2416, 23erref 8719 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤))
256, 12grpass 18824 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2611, 25sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2724, 26breqtrd 5173 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
28 eqid 2732 . . . . 5 (0g𝐺) = (0g𝐺)
296, 28grpidcl 18846 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
3011, 29syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐺) ∈ (Base‘𝐺))
316, 12, 28grplid 18848 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
3211, 31sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
339adantr 481 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
34 simpr 485 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺))
3533, 34erref 8719 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢)
3632, 35eqbrtrd 5169 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢)
37 eqid 2732 . . . . 5 (invg𝐺) = (invg𝐺)
386, 37grpinvcl 18868 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
3911, 38sylan 580 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
406, 12, 28, 37grplinv 18870 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4111, 40sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4230adantr 481 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
4333, 42erref 8719 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺)(𝐺 ~QG 𝑆)(0g𝐺))
4441, 43eqbrtrd 5169 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)(0g𝐺))
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 18937 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧ [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻)))
4645simpld 495 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405   Er wer 8696  [cec 8697  Basecbs 17140  +gcplusg 17193  0gc0g 17381   /s cqus 17447  Grpcgrp 18815  invgcminusg 18816  SubGrpcsubg 18994  NrmSGrpcnsg 18995   ~QG cqg 18996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-ec 8701  df-qs 8705  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-nsg 18998  df-eqg 18999
This theorem is referenced by:  qus0  19062  qusinv  19063  qusghm  19123  qusabl  19727  rzgrp  21167  qustgplem  23616  nsgqusf1olem1  32512  ghmquskerlem3  32519  ghmqusker  32520
  Copyright terms: Public domain W3C validator