MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusgrp Structured version   Visualization version   GIF version

Theorem qusgrp 19204
Description: If 𝑌 is a normal subgroup of 𝐺, then 𝐻 = 𝐺 / 𝑌 is a group, called the quotient of 𝐺 by 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
Assertion
Ref Expression
qusgrp (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)

Proof of Theorem qusgrp
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 eqidd 2738 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺))
4 eqidd 2738 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (+g𝐺) = (+g𝐺))
5 nsgsubg 19176 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2737 . . . . 5 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
86, 7eqger 19196 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
95, 8syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
10 subgrcl 19149 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
115, 10syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
12 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
136, 7, 12eqgcpbl 19200 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g𝐺)𝑑)))
146, 12grpcl 18959 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
1511, 14syl3an1 1164 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
169adantr 480 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
1711adantr 480 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
18 simpr1 1195 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
19 simpr2 1196 . . . . . . 7 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
2017, 18, 19, 14syl3anc 1373 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺))
21 simpr3 1197 . . . . . 6 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺))
226, 12grpcl 18959 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑢(+g𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2317, 20, 21, 22syl3anc 1373 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) ∈ (Base‘𝐺))
2416, 23erref 8765 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤))
256, 12grpass 18960 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2611, 25sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤) = (𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
2724, 26breqtrd 5169 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)𝑣)(+g𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g𝐺)(𝑣(+g𝐺)𝑤)))
28 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
296, 28grpidcl 18983 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
3011, 29syl 17 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐺) ∈ (Base‘𝐺))
316, 12, 28grplid 18985 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
3211, 31sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢) = 𝑢)
339adantr 480 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺))
34 simpr 484 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺))
3533, 34erref 8765 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢)
3632, 35eqbrtrd 5165 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢)
37 eqid 2737 . . . . 5 (invg𝐺) = (invg𝐺)
386, 37grpinvcl 19005 . . . 4 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
3911, 38sylan 580 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑢) ∈ (Base‘𝐺))
406, 12, 28, 37grplinv 19007 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4111, 40sylan 580 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢) = (0g𝐺))
4230adantr 480 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
4333, 42erref 8765 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g𝐺)(𝐺 ~QG 𝑆)(0g𝐺))
4441, 43eqbrtrd 5165 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg𝐺)‘𝑢)(+g𝐺)𝑢)(𝐺 ~QG 𝑆)(0g𝐺))
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 19076 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧ [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻)))
4645simpld 494 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431   Er wer 8742  [cec 8743  Basecbs 17247  +gcplusg 17297  0gc0g 17484   /s cqus 17550  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-nsg 19142  df-eqg 19143
This theorem is referenced by:  qus0  19207  qusinv  19208  qusghm  19273  ghmqusnsg  19300  ghmquskerlem3  19304  ghmqusker  19305  qusabl  19883  rzgrp  21641  qustgplem  24129  nsgqusf1olem1  33441
  Copyright terms: Public domain W3C validator