Step | Hyp | Ref
| Expression |
1 | | qusgrp.h |
. . . 4
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))) |
3 | | eqidd 2739 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (Base‘𝐺) = (Base‘𝐺)) |
4 | | eqidd 2739 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐺)) |
5 | | nsgsubg 18701 |
. . . 4
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
6 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
7 | | eqid 2738 |
. . . . 5
⊢ (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆) |
8 | 6, 7 | eqger 18721 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺)) |
9 | 5, 8 | syl 17 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er (Base‘𝐺)) |
10 | | subgrcl 18675 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
11 | 5, 10 | syl 17 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
12 | | eqid 2738 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
13 | 6, 7, 12 | eqgcpbl 18725 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑐 ∧ 𝑏(𝐺 ~QG 𝑆)𝑑) → (𝑎(+g‘𝐺)𝑏)(𝐺 ~QG 𝑆)(𝑐(+g‘𝐺)𝑑))) |
14 | 6, 12 | grpcl 18500 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g‘𝐺)𝑣) ∈ (Base‘𝐺)) |
15 | 11, 14 | syl3an1 1161 |
. . 3
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(+g‘𝐺)𝑣) ∈ (Base‘𝐺)) |
16 | 9 | adantr 480 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝐺 ~QG 𝑆) Er (Base‘𝐺)) |
17 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp) |
18 | | simpr1 1192 |
. . . . . . 7
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺)) |
19 | | simpr2 1193 |
. . . . . . 7
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺)) |
20 | 17, 18, 19, 14 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → (𝑢(+g‘𝐺)𝑣) ∈ (Base‘𝐺)) |
21 | | simpr3 1194 |
. . . . . 6
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → 𝑤 ∈ (Base‘𝐺)) |
22 | 6, 12 | grpcl 18500 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑢(+g‘𝐺)𝑣) ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺)) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤) ∈ (Base‘𝐺)) |
23 | 17, 20, 21, 22 | syl3anc 1369 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤) ∈ (Base‘𝐺)) |
24 | 16, 23 | erref 8476 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤)(𝐺 ~QG 𝑆)((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤)) |
25 | 6, 12 | grpass 18501 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤) = (𝑢(+g‘𝐺)(𝑣(+g‘𝐺)𝑤))) |
26 | 11, 25 | sylan 579 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤) = (𝑢(+g‘𝐺)(𝑣(+g‘𝐺)𝑤))) |
27 | 24, 26 | breqtrd 5096 |
. . 3
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺) ∧ 𝑤 ∈ (Base‘𝐺))) → ((𝑢(+g‘𝐺)𝑣)(+g‘𝐺)𝑤)(𝐺 ~QG 𝑆)(𝑢(+g‘𝐺)(𝑣(+g‘𝐺)𝑤))) |
28 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
29 | 6, 28 | grpidcl 18522 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ (Base‘𝐺)) |
30 | 11, 29 | syl 17 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) →
(0g‘𝐺)
∈ (Base‘𝐺)) |
31 | 6, 12, 28 | grplid 18524 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) →
((0g‘𝐺)(+g‘𝐺)𝑢) = 𝑢) |
32 | 11, 31 | sylan 579 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g‘𝐺)(+g‘𝐺)𝑢) = 𝑢) |
33 | 9 | adantr 480 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝐺 ~QG 𝑆) Er (Base‘𝐺)) |
34 | | simpr 484 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢 ∈ (Base‘𝐺)) |
35 | 33, 34 | erref 8476 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → 𝑢(𝐺 ~QG 𝑆)𝑢) |
36 | 32, 35 | eqbrtrd 5092 |
. . 3
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((0g‘𝐺)(+g‘𝐺)𝑢)(𝐺 ~QG 𝑆)𝑢) |
37 | | eqid 2738 |
. . . . 5
⊢
(invg‘𝐺) = (invg‘𝐺) |
38 | 6, 37 | grpinvcl 18542 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) →
((invg‘𝐺)‘𝑢) ∈ (Base‘𝐺)) |
39 | 11, 38 | sylan 579 |
. . 3
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → ((invg‘𝐺)‘𝑢) ∈ (Base‘𝐺)) |
40 | 6, 12, 28, 37 | grplinv 18543 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺)) →
(((invg‘𝐺)‘𝑢)(+g‘𝐺)𝑢) = (0g‘𝐺)) |
41 | 11, 40 | sylan 579 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg‘𝐺)‘𝑢)(+g‘𝐺)𝑢) = (0g‘𝐺)) |
42 | 30 | adantr 480 |
. . . . 5
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g‘𝐺) ∈ (Base‘𝐺)) |
43 | 33, 42 | erref 8476 |
. . . 4
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (0g‘𝐺)(𝐺 ~QG 𝑆)(0g‘𝐺)) |
44 | 41, 43 | eqbrtrd 5092 |
. . 3
⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (((invg‘𝐺)‘𝑢)(+g‘𝐺)𝑢)(𝐺 ~QG 𝑆)(0g‘𝐺)) |
45 | 2, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44 | qusgrp2 18608 |
. 2
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐻 ∈ Grp ∧
[(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻))) |
46 | 45 | simpld 494 |
1
⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |