Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sate0fv0 Structured version   Visualization version   GIF version

Theorem sate0fv0 35411
Description: A simplified satisfaction predicate as function over wff codes over an empty model is an empty set. (Contributed by AV, 31-Oct-2023.)
Assertion
Ref Expression
sate0fv0 (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat 𝑈) → 𝑆 = ∅))

Proof of Theorem sate0fv0
StepHypRef Expression
1 0ex 5265 . . . 4 ∅ ∈ V
2 satef 35410 . . . 4 ((∅ ∈ V ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (∅ Sat 𝑈)) → 𝑆:ω⟶∅)
31, 2mp3an1 1450 . . 3 ((𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (∅ Sat 𝑈)) → 𝑆:ω⟶∅)
43ex 412 . 2 (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat 𝑈) → 𝑆:ω⟶∅))
5 f00 6745 . . 3 (𝑆:ω⟶∅ ↔ (𝑆 = ∅ ∧ ω = ∅))
65simplbi 497 . 2 (𝑆:ω⟶∅ → 𝑆 = ∅)
74, 6syl6 35 1 (𝑈 ∈ (Fmla‘ω) → (𝑆 ∈ (∅ Sat 𝑈) → 𝑆 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  Fmlacfmla 35331   Sat csate 35332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator