MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssxr Structured version   Visualization version   GIF version

Theorem ixxssxr 13073
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxssxr (𝐴𝑂𝐵) ⊆ ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssxr
StepHypRef Expression
1 df-ov 7271 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxf 13071 . . . 4 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
4 0elpw 5281 . . . 4 ∅ ∈ 𝒫 ℝ*
53, 4f0cli 6968 . . 3 (𝑂‘⟨𝐴, 𝐵⟩) ∈ 𝒫 ℝ*
61, 5eqeltri 2836 . 2 (𝐴𝑂𝐵) ∈ 𝒫 ℝ*
7 ovex 7301 . . 3 (𝐴𝑂𝐵) ∈ V
87elpw 4542 . 2 ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*)
96, 8mpbi 229 1 (𝐴𝑂𝐵) ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2109  {crab 3069  wss 3891  𝒫 cpw 4538  cop 4572   class class class wbr 5078   × cxp 5586  cfv 6430  (class class class)co 7268  cmpo 7270  *cxr 10992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-xr 10997
This theorem is referenced by:  iccssxr  13144  iocssxr  13145  icossxr  13146  ioossioobi  43009
  Copyright terms: Public domain W3C validator