![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
ixx.1 | β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) |
Ref | Expression |
---|---|
ixxssxr | β’ (π΄ππ΅) β β* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7417 | . . 3 β’ (π΄ππ΅) = (πββ¨π΄, π΅β©) | |
2 | ixx.1 | . . . . 5 β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) | |
3 | 2 | ixxf 13358 | . . . 4 β’ π:(β* Γ β*)βΆπ« β* |
4 | 0elpw 5350 | . . . 4 β’ β β π« β* | |
5 | 3, 4 | f0cli 7102 | . . 3 β’ (πββ¨π΄, π΅β©) β π« β* |
6 | 1, 5 | eqeltri 2824 | . 2 β’ (π΄ππ΅) β π« β* |
7 | ovex 7447 | . . 3 β’ (π΄ππ΅) β V | |
8 | 7 | elpw 4602 | . 2 β’ ((π΄ππ΅) β π« β* β (π΄ππ΅) β β*) |
9 | 6, 8 | mpbi 229 | 1 β’ (π΄ππ΅) β β* |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1534 β wcel 2099 {crab 3427 β wss 3944 π« cpw 4598 β¨cop 4630 class class class wbr 5142 Γ cxp 5670 βcfv 6542 (class class class)co 7414 β cmpo 7416 β*cxr 11269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-xr 11274 |
This theorem is referenced by: iccssxr 13431 iocssxr 13432 icossxr 13433 ioossioobi 44825 |
Copyright terms: Public domain | W3C validator |