Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7271 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
2 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
3 | 2 | ixxf 13071 | . . . 4 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
4 | 0elpw 5281 | . . . 4 ⊢ ∅ ∈ 𝒫 ℝ* | |
5 | 3, 4 | f0cli 6968 | . . 3 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ 𝒫 ℝ* |
6 | 1, 5 | eqeltri 2836 | . 2 ⊢ (𝐴𝑂𝐵) ∈ 𝒫 ℝ* |
7 | ovex 7301 | . . 3 ⊢ (𝐴𝑂𝐵) ∈ V | |
8 | 7 | elpw 4542 | . 2 ⊢ ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*) |
9 | 6, 8 | mpbi 229 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 𝒫 cpw 4538 〈cop 4572 class class class wbr 5078 × cxp 5586 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ℝ*cxr 10992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-xr 10997 |
This theorem is referenced by: iccssxr 13144 iocssxr 13145 icossxr 13146 ioossioobi 43009 |
Copyright terms: Public domain | W3C validator |