MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssxr Structured version   Visualization version   GIF version

Theorem ixxssxr 12385
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxssxr (𝐴𝑂𝐵) ⊆ ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssxr
StepHypRef Expression
1 df-ov 6794 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxf 12383 . . . 4 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
4 0elpw 4965 . . . 4 ∅ ∈ 𝒫 ℝ*
53, 4f0cli 6511 . . 3 (𝑂‘⟨𝐴, 𝐵⟩) ∈ 𝒫 ℝ*
61, 5eqeltri 2846 . 2 (𝐴𝑂𝐵) ∈ 𝒫 ℝ*
7 ovex 6821 . . 3 (𝐴𝑂𝐵) ∈ V
87elpw 4303 . 2 ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*)
96, 8mpbi 220 1 (𝐴𝑂𝐵) ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  {crab 3065  wss 3723  𝒫 cpw 4297  cop 4322   class class class wbr 4786   × cxp 5247  cfv 6029  (class class class)co 6791  cmpt2 6793  *cxr 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-1st 7313  df-2nd 7314  df-xr 10278
This theorem is referenced by:  iccssxr  12454  iocssxr  12455  icossxr  12456  ioossioobi  40255
  Copyright terms: Public domain W3C validator