Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7146 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
2 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
3 | 2 | ixxf 12774 | . . . 4 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
4 | 0elpw 5217 | . . . 4 ⊢ ∅ ∈ 𝒫 ℝ* | |
5 | 3, 4 | f0cli 6848 | . . 3 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ 𝒫 ℝ* |
6 | 1, 5 | eqeltri 2847 | . 2 ⊢ (𝐴𝑂𝐵) ∈ 𝒫 ℝ* |
7 | ovex 7176 | . . 3 ⊢ (𝐴𝑂𝐵) ∈ V | |
8 | 7 | elpw 4491 | . 2 ⊢ ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*) |
9 | 6, 8 | mpbi 233 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 400 = wceq 1539 ∈ wcel 2112 {crab 3072 ⊆ wss 3854 𝒫 cpw 4487 〈cop 4521 class class class wbr 5025 × cxp 5515 ‘cfv 6328 (class class class)co 7143 ∈ cmpo 7145 ℝ*cxr 10697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-id 5423 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-fv 6336 df-ov 7146 df-oprab 7147 df-mpo 7148 df-1st 7686 df-2nd 7687 df-xr 10702 |
This theorem is referenced by: iccssxr 12847 iocssxr 12848 icossxr 12849 ioossioobi 42505 |
Copyright terms: Public domain | W3C validator |