| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version | ||
| Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7344 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
| 2 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 3 | 2 | ixxf 13247 | . . . 4 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 4 | 0elpw 5292 | . . . 4 ⊢ ∅ ∈ 𝒫 ℝ* | |
| 5 | 3, 4 | f0cli 7026 | . . 3 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ 𝒫 ℝ* |
| 6 | 1, 5 | eqeltri 2825 | . 2 ⊢ (𝐴𝑂𝐵) ∈ 𝒫 ℝ* |
| 7 | ovex 7374 | . . 3 ⊢ (𝐴𝑂𝐵) ∈ V | |
| 8 | 7 | elpw 4552 | . 2 ⊢ ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*) |
| 9 | 6, 8 | mpbi 230 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 ⊆ wss 3900 𝒫 cpw 4548 〈cop 4580 class class class wbr 5089 × cxp 5612 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 ℝ*cxr 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-xr 11142 |
| This theorem is referenced by: iccssxr 13322 iocssxr 13323 icossxr 13324 ioossioobi 45536 |
| Copyright terms: Public domain | W3C validator |