MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssxr Structured version   Visualization version   GIF version

Theorem ixxssxr 13278
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxssxr (𝐴𝑂𝐵) ⊆ ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssxr
StepHypRef Expression
1 df-ov 7356 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxf 13276 . . . 4 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
4 0elpw 5298 . . . 4 ∅ ∈ 𝒫 ℝ*
53, 4f0cli 7036 . . 3 (𝑂‘⟨𝐴, 𝐵⟩) ∈ 𝒫 ℝ*
61, 5eqeltri 2824 . 2 (𝐴𝑂𝐵) ∈ 𝒫 ℝ*
7 ovex 7386 . . 3 (𝐴𝑂𝐵) ∈ V
87elpw 4557 . 2 ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*)
96, 8mpbi 230 1 (𝐴𝑂𝐵) ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  𝒫 cpw 4553  cop 4585   class class class wbr 5095   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  *cxr 11167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-xr 11172
This theorem is referenced by:  iccssxr  13351  iocssxr  13352  icossxr  13353  ioossioobi  45499
  Copyright terms: Public domain W3C validator