MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssxr Structured version   Visualization version   GIF version

Theorem ixxssxr 13318
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxssxr (𝐴𝑂𝐵) ⊆ ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssxr
StepHypRef Expression
1 df-ov 7390 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxf 13316 . . . 4 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
4 0elpw 5311 . . . 4 ∅ ∈ 𝒫 ℝ*
53, 4f0cli 7070 . . 3 (𝑂‘⟨𝐴, 𝐵⟩) ∈ 𝒫 ℝ*
61, 5eqeltri 2824 . 2 (𝐴𝑂𝐵) ∈ 𝒫 ℝ*
7 ovex 7420 . . 3 (𝐴𝑂𝐵) ∈ V
87elpw 4567 . 2 ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*)
96, 8mpbi 230 1 (𝐴𝑂𝐵) ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {crab 3405  wss 3914  𝒫 cpw 4563  cop 4595   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  *cxr 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-xr 11212
This theorem is referenced by:  iccssxr  13391  iocssxr  13392  icossxr  13393  ioossioobi  45515
  Copyright terms: Public domain W3C validator