| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version | ||
| Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
| 2 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 3 | 2 | ixxf 13261 | . . . 4 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 4 | 0elpw 5296 | . . . 4 ⊢ ∅ ∈ 𝒫 ℝ* | |
| 5 | 3, 4 | f0cli 7037 | . . 3 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ 𝒫 ℝ* |
| 6 | 1, 5 | eqeltri 2827 | . 2 ⊢ (𝐴𝑂𝐵) ∈ 𝒫 ℝ* |
| 7 | ovex 7385 | . . 3 ⊢ (𝐴𝑂𝐵) ∈ V | |
| 8 | 7 | elpw 4553 | . 2 ⊢ ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*) |
| 9 | 6, 8 | mpbi 230 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 𝒫 cpw 4549 〈cop 4581 class class class wbr 5093 × cxp 5617 ‘cfv 6487 (class class class)co 7352 ∈ cmpo 7354 ℝ*cxr 11151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-xr 11156 |
| This theorem is referenced by: iccssxr 13336 iocssxr 13337 icossxr 13338 ioossioobi 45622 |
| Copyright terms: Public domain | W3C validator |