MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxssxr Structured version   Visualization version   GIF version

Theorem ixxssxr 13325
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxssxr (𝐴𝑂𝐵) ⊆ ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxssxr
StepHypRef Expression
1 df-ov 7393 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxf 13323 . . . 4 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
4 0elpw 5314 . . . 4 ∅ ∈ 𝒫 ℝ*
53, 4f0cli 7073 . . 3 (𝑂‘⟨𝐴, 𝐵⟩) ∈ 𝒫 ℝ*
61, 5eqeltri 2825 . 2 (𝐴𝑂𝐵) ∈ 𝒫 ℝ*
7 ovex 7423 . . 3 (𝐴𝑂𝐵) ∈ V
87elpw 4570 . 2 ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*)
96, 8mpbi 230 1 (𝐴𝑂𝐵) ⊆ ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917  𝒫 cpw 4566  cop 4598   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  *cxr 11214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-xr 11219
This theorem is referenced by:  iccssxr  13398  iocssxr  13399  icossxr  13400  ioossioobi  45522
  Copyright terms: Public domain W3C validator