| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version | ||
| Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
| Ref | Expression |
|---|---|
| ixxssxr | ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7393 | . . 3 ⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) | |
| 2 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
| 3 | 2 | ixxf 13323 | . . . 4 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
| 4 | 0elpw 5314 | . . . 4 ⊢ ∅ ∈ 𝒫 ℝ* | |
| 5 | 3, 4 | f0cli 7073 | . . 3 ⊢ (𝑂‘〈𝐴, 𝐵〉) ∈ 𝒫 ℝ* |
| 6 | 1, 5 | eqeltri 2825 | . 2 ⊢ (𝐴𝑂𝐵) ∈ 𝒫 ℝ* |
| 7 | ovex 7423 | . . 3 ⊢ (𝐴𝑂𝐵) ∈ V | |
| 8 | 7 | elpw 4570 | . 2 ⊢ ((𝐴𝑂𝐵) ∈ 𝒫 ℝ* ↔ (𝐴𝑂𝐵) ⊆ ℝ*) |
| 9 | 6, 8 | mpbi 230 | 1 ⊢ (𝐴𝑂𝐵) ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 𝒫 cpw 4566 〈cop 4598 class class class wbr 5110 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℝ*cxr 11214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-xr 11219 |
| This theorem is referenced by: iccssxr 13398 iocssxr 13399 icossxr 13400 ioossioobi 45522 |
| Copyright terms: Public domain | W3C validator |