![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxssxr | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
ixx.1 | β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) |
Ref | Expression |
---|---|
ixxssxr | β’ (π΄ππ΅) β β* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7408 | . . 3 β’ (π΄ππ΅) = (πββ¨π΄, π΅β©) | |
2 | ixx.1 | . . . . 5 β’ π = (π₯ β β*, π¦ β β* β¦ {π§ β β* β£ (π₯π π§ β§ π§ππ¦)}) | |
3 | 2 | ixxf 13330 | . . . 4 β’ π:(β* Γ β*)βΆπ« β* |
4 | 0elpw 5353 | . . . 4 β’ β β π« β* | |
5 | 3, 4 | f0cli 7096 | . . 3 β’ (πββ¨π΄, π΅β©) β π« β* |
6 | 1, 5 | eqeltri 2829 | . 2 β’ (π΄ππ΅) β π« β* |
7 | ovex 7438 | . . 3 β’ (π΄ππ΅) β V | |
8 | 7 | elpw 4605 | . 2 β’ ((π΄ππ΅) β π« β* β (π΄ππ΅) β β*) |
9 | 6, 8 | mpbi 229 | 1 β’ (π΄ππ΅) β β* |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3947 π« cpw 4601 β¨cop 4633 class class class wbr 5147 Γ cxp 5673 βcfv 6540 (class class class)co 7405 β cmpo 7407 β*cxr 11243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-xr 11248 |
This theorem is referenced by: iccssxr 13403 iocssxr 13404 icossxr 13405 ioossioobi 44216 |
Copyright terms: Public domain | W3C validator |