![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version |
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephon | ⊢ (ℵ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10134 | . . 3 ⊢ ℵ Fn On | |
2 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
3 | 2 | eleq1d 2829 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
4 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
5 | 4 | eleq1d 2829 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
6 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
7 | 6 | eleq1d 2829 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
8 | aleph0 10135 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
9 | omelon 9715 | . . . . . 6 ⊢ ω ∈ On | |
10 | 8, 9 | eqeltri 2840 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
11 | alephsuc 10137 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
12 | harcl 9628 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
13 | 11, 12 | eqeltrdi 2852 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
15 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
16 | iunon 8395 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
17 | 15, 16 | mpan 689 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
18 | alephlim 10136 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
19 | 15, 18 | mpan 689 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
20 | 19 | eleq1d 2829 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
21 | 17, 20 | imbitrrid 246 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7897 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
23 | 22 | rgen 3069 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
24 | ffnfv 7153 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
25 | 1, 23, 24 | mpbir2an 710 | . 2 ⊢ ℵ:On⟶On |
26 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
27 | 25, 26 | f0cli 7132 | 1 ⊢ (ℵ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∅c0 4352 ∪ ciun 5015 Oncon0 6395 Lim wlim 6396 suc csuc 6397 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 ωcom 7903 harchar 9625 ℵcale 10005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-en 9004 df-dom 9005 df-oi 9579 df-har 9626 df-aleph 10009 |
This theorem is referenced by: alephnbtwn 10140 alephnbtwn2 10141 alephordilem1 10142 alephord 10144 alephord2 10145 alephord3 10147 alephsucdom 10148 alephsuc2 10149 alephf1 10154 alephsdom 10155 alephdom2 10156 alephle 10157 cardaleph 10158 alephf1ALT 10172 alephfp 10177 dfac12k 10217 alephsing 10345 alephval2 10641 alephadd 10646 alephmul 10647 alephexp1 10648 alephsuc3 10649 alephreg 10651 pwcfsdom 10652 cfpwsdom 10653 gchaleph 10740 gchaleph2 10741 gch2 10744 minregex2 43497 alephiso2 43520 |
Copyright terms: Public domain | W3C validator |