![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version |
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
alephon | ⊢ (ℵ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephfnon 10066 | . . 3 ⊢ ℵ Fn On | |
2 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
3 | 2 | eleq1d 2817 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
5 | 4 | eleq1d 2817 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
6 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
7 | 6 | eleq1d 2817 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
8 | aleph0 10067 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
9 | omelon 9647 | . . . . . 6 ⊢ ω ∈ On | |
10 | 8, 9 | eqeltri 2828 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
11 | alephsuc 10069 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
12 | harcl 9560 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
13 | 11, 12 | eqeltrdi 2840 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
15 | vex 3477 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
16 | iunon 8345 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
17 | 15, 16 | mpan 687 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
18 | alephlim 10068 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
19 | 15, 18 | mpan 687 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
20 | 19 | eleq1d 2817 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
21 | 17, 20 | imbitrrid 245 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7853 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
23 | 22 | rgen 3062 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
24 | ffnfv 7120 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
25 | 1, 23, 24 | mpbir2an 708 | . 2 ⊢ ℵ:On⟶On |
26 | 0elon 6418 | . 2 ⊢ ∅ ∈ On | |
27 | 25, 26 | f0cli 7099 | 1 ⊢ (ℵ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ∅c0 4322 ∪ ciun 4997 Oncon0 6364 Lim wlim 6365 suc csuc 6366 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 ωcom 7859 harchar 9557 ℵcale 9937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-en 8946 df-dom 8947 df-oi 9511 df-har 9558 df-aleph 9941 |
This theorem is referenced by: alephnbtwn 10072 alephnbtwn2 10073 alephordilem1 10074 alephord 10076 alephord2 10077 alephord3 10079 alephsucdom 10080 alephsuc2 10081 alephf1 10086 alephsdom 10087 alephdom2 10088 alephle 10089 cardaleph 10090 alephf1ALT 10104 alephfp 10109 dfac12k 10148 alephsing 10277 alephval2 10573 alephadd 10578 alephmul 10579 alephexp1 10580 alephsuc3 10581 alephreg 10583 pwcfsdom 10584 cfpwsdom 10585 gchaleph 10672 gchaleph2 10673 gch2 10676 minregex2 42749 alephiso2 42772 |
Copyright terms: Public domain | W3C validator |