MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephon Structured version   Visualization version   GIF version

Theorem alephon 10109
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephon (ℵ‘𝐴) ∈ On

Proof of Theorem alephon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 10105 . . 3 ℵ Fn On
2 fveq2 6906 . . . . . 6 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32eleq1d 2826 . . . . 5 (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On))
4 fveq2 6906 . . . . . 6 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
54eleq1d 2826 . . . . 5 (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On))
6 fveq2 6906 . . . . . 6 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
76eleq1d 2826 . . . . 5 (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On))
8 aleph0 10106 . . . . . 6 (ℵ‘∅) = ω
9 omelon 9686 . . . . . 6 ω ∈ On
108, 9eqeltri 2837 . . . . 5 (ℵ‘∅) ∈ On
11 alephsuc 10108 . . . . . . 7 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
12 harcl 9599 . . . . . . 7 (har‘(ℵ‘𝑦)) ∈ On
1311, 12eqeltrdi 2849 . . . . . 6 (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On)
1413a1d 25 . . . . 5 (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On))
15 vex 3484 . . . . . . 7 𝑥 ∈ V
16 iunon 8379 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (ℵ‘𝑦) ∈ On) → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
1715, 16mpan 690 . . . . . 6 (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
18 alephlim 10107 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
1915, 18mpan 690 . . . . . . 7 (Lim 𝑥 → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2019eleq1d 2826 . . . . . 6 (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ 𝑦𝑥 (ℵ‘𝑦) ∈ On))
2117, 20imbitrrid 246 . . . . 5 (Lim 𝑥 → (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On))
223, 5, 7, 5, 10, 14, 21tfinds 7881 . . . 4 (𝑦 ∈ On → (ℵ‘𝑦) ∈ On)
2322rgen 3063 . . 3 𝑦 ∈ On (ℵ‘𝑦) ∈ On
24 ffnfv 7139 . . 3 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On))
251, 23, 24mpbir2an 711 . 2 ℵ:On⟶On
26 0elon 6438 . 2 ∅ ∈ On
2725, 26f0cli 7118 1 (ℵ‘𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  c0 4333   ciun 4991  Oncon0 6384  Lim wlim 6385  suc csuc 6386   Fn wfn 6556  wf 6557  cfv 6561  ωcom 7887  harchar 9596  cale 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-en 8986  df-dom 8987  df-oi 9550  df-har 9597  df-aleph 9980
This theorem is referenced by:  alephnbtwn  10111  alephnbtwn2  10112  alephordilem1  10113  alephord  10115  alephord2  10116  alephord3  10118  alephsucdom  10119  alephsuc2  10120  alephf1  10125  alephsdom  10126  alephdom2  10127  alephle  10128  cardaleph  10129  alephf1ALT  10143  alephfp  10148  dfac12k  10188  alephsing  10316  alephval2  10612  alephadd  10617  alephmul  10618  alephexp1  10619  alephsuc3  10620  alephreg  10622  pwcfsdom  10623  cfpwsdom  10624  gchaleph  10711  gchaleph2  10712  gch2  10715  minregex2  43548  alephiso2  43571
  Copyright terms: Public domain W3C validator