| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version | ||
| Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephon | ⊢ (ℵ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 10025 | . . 3 ⊢ ℵ Fn On | |
| 2 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
| 3 | 2 | eleq1d 2814 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
| 5 | 4 | eleq1d 2814 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
| 6 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
| 7 | 6 | eleq1d 2814 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
| 8 | aleph0 10026 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 9 | omelon 9606 | . . . . . 6 ⊢ ω ∈ On | |
| 10 | 8, 9 | eqeltri 2825 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
| 11 | alephsuc 10028 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
| 12 | harcl 9519 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
| 13 | 11, 12 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
| 15 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | iunon 8311 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
| 17 | 15, 16 | mpan 690 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
| 18 | alephlim 10027 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
| 19 | 15, 18 | mpan 690 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 20 | 19 | eleq1d 2814 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
| 21 | 17, 20 | imbitrrid 246 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
| 22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7839 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
| 23 | 22 | rgen 3047 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
| 24 | ffnfv 7094 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
| 25 | 1, 23, 24 | mpbir2an 711 | . 2 ⊢ ℵ:On⟶On |
| 26 | 0elon 6390 | . 2 ⊢ ∅ ∈ On | |
| 27 | 25, 26 | f0cli 7073 | 1 ⊢ (ℵ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 ∪ ciun 4958 Oncon0 6335 Lim wlim 6336 suc csuc 6337 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 ωcom 7845 harchar 9516 ℵcale 9896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-en 8922 df-dom 8923 df-oi 9470 df-har 9517 df-aleph 9900 |
| This theorem is referenced by: alephnbtwn 10031 alephnbtwn2 10032 alephordilem1 10033 alephord 10035 alephord2 10036 alephord3 10038 alephsucdom 10039 alephsuc2 10040 alephf1 10045 alephsdom 10046 alephdom2 10047 alephle 10048 cardaleph 10049 alephf1ALT 10063 alephfp 10068 dfac12k 10108 alephsing 10236 alephval2 10532 alephadd 10537 alephmul 10538 alephexp1 10539 alephsuc3 10540 alephreg 10542 pwcfsdom 10543 cfpwsdom 10544 gchaleph 10631 gchaleph2 10632 gch2 10635 minregex2 43531 alephiso2 43554 |
| Copyright terms: Public domain | W3C validator |