| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version | ||
| Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephon | ⊢ (ℵ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 10077 | . . 3 ⊢ ℵ Fn On | |
| 2 | fveq2 6875 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
| 3 | 2 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
| 4 | fveq2 6875 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
| 5 | 4 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
| 6 | fveq2 6875 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
| 7 | 6 | eleq1d 2819 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
| 8 | aleph0 10078 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 9 | omelon 9658 | . . . . . 6 ⊢ ω ∈ On | |
| 10 | 8, 9 | eqeltri 2830 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
| 11 | alephsuc 10080 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
| 12 | harcl 9571 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
| 13 | 11, 12 | eqeltrdi 2842 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
| 15 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | iunon 8351 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
| 17 | 15, 16 | mpan 690 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
| 18 | alephlim 10079 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
| 19 | 15, 18 | mpan 690 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 20 | 19 | eleq1d 2819 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
| 21 | 17, 20 | imbitrrid 246 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
| 22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7853 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
| 23 | 22 | rgen 3053 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
| 24 | ffnfv 7108 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
| 25 | 1, 23, 24 | mpbir2an 711 | . 2 ⊢ ℵ:On⟶On |
| 26 | 0elon 6407 | . 2 ⊢ ∅ ∈ On | |
| 27 | 25, 26 | f0cli 7087 | 1 ⊢ (ℵ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∅c0 4308 ∪ ciun 4967 Oncon0 6352 Lim wlim 6353 suc csuc 6354 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 ωcom 7859 harchar 9568 ℵcale 9948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-en 8958 df-dom 8959 df-oi 9522 df-har 9569 df-aleph 9952 |
| This theorem is referenced by: alephnbtwn 10083 alephnbtwn2 10084 alephordilem1 10085 alephord 10087 alephord2 10088 alephord3 10090 alephsucdom 10091 alephsuc2 10092 alephf1 10097 alephsdom 10098 alephdom2 10099 alephle 10100 cardaleph 10101 alephf1ALT 10115 alephfp 10120 dfac12k 10160 alephsing 10288 alephval2 10584 alephadd 10589 alephmul 10590 alephexp1 10591 alephsuc3 10592 alephreg 10594 pwcfsdom 10595 cfpwsdom 10596 gchaleph 10683 gchaleph2 10684 gch2 10687 minregex2 43506 alephiso2 43529 |
| Copyright terms: Public domain | W3C validator |