| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version | ||
| Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephon | ⊢ (ℵ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 9956 | . . 3 ⊢ ℵ Fn On | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
| 3 | 2 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
| 4 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
| 5 | 4 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
| 7 | 6 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
| 8 | aleph0 9957 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 9 | omelon 9536 | . . . . . 6 ⊢ ω ∈ On | |
| 10 | 8, 9 | eqeltri 2827 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
| 11 | alephsuc 9959 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
| 12 | harcl 9445 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
| 13 | 11, 12 | eqeltrdi 2839 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
| 15 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | iunon 8259 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
| 17 | 15, 16 | mpan 690 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
| 18 | alephlim 9958 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
| 19 | 15, 18 | mpan 690 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 20 | 19 | eleq1d 2816 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
| 21 | 17, 20 | imbitrrid 246 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
| 22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7790 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
| 23 | 22 | rgen 3049 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
| 24 | ffnfv 7052 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
| 25 | 1, 23, 24 | mpbir2an 711 | . 2 ⊢ ℵ:On⟶On |
| 26 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 27 | 25, 26 | f0cli 7031 | 1 ⊢ (ℵ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4280 ∪ ciun 4939 Oncon0 6306 Lim wlim 6307 suc csuc 6308 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 ωcom 7796 harchar 9442 ℵcale 9829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-en 8870 df-dom 8871 df-oi 9396 df-har 9443 df-aleph 9833 |
| This theorem is referenced by: alephnbtwn 9962 alephnbtwn2 9963 alephordilem1 9964 alephord 9966 alephord2 9967 alephord3 9969 alephsucdom 9970 alephsuc2 9971 alephf1 9976 alephsdom 9977 alephdom2 9978 alephle 9979 cardaleph 9980 alephf1ALT 9994 alephfp 9999 dfac12k 10039 alephsing 10167 alephval2 10463 alephadd 10468 alephmul 10469 alephexp1 10470 alephsuc3 10471 alephreg 10473 pwcfsdom 10474 cfpwsdom 10475 gchaleph 10562 gchaleph2 10563 gch2 10566 minregex2 43576 alephiso2 43599 |
| Copyright terms: Public domain | W3C validator |