MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephon Structured version   Visualization version   GIF version

Theorem alephon 9960
Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephon (ℵ‘𝐴) ∈ On

Proof of Theorem alephon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 9956 . . 3 ℵ Fn On
2 fveq2 6822 . . . . . 6 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
32eleq1d 2816 . . . . 5 (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On))
4 fveq2 6822 . . . . . 6 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
54eleq1d 2816 . . . . 5 (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On))
6 fveq2 6822 . . . . . 6 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
76eleq1d 2816 . . . . 5 (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On))
8 aleph0 9957 . . . . . 6 (ℵ‘∅) = ω
9 omelon 9536 . . . . . 6 ω ∈ On
108, 9eqeltri 2827 . . . . 5 (ℵ‘∅) ∈ On
11 alephsuc 9959 . . . . . . 7 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
12 harcl 9445 . . . . . . 7 (har‘(ℵ‘𝑦)) ∈ On
1311, 12eqeltrdi 2839 . . . . . 6 (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On)
1413a1d 25 . . . . 5 (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On))
15 vex 3440 . . . . . . 7 𝑥 ∈ V
16 iunon 8259 . . . . . . 7 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (ℵ‘𝑦) ∈ On) → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
1715, 16mpan 690 . . . . . 6 (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → 𝑦𝑥 (ℵ‘𝑦) ∈ On)
18 alephlim 9958 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
1915, 18mpan 690 . . . . . . 7 (Lim 𝑥 → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2019eleq1d 2816 . . . . . 6 (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ 𝑦𝑥 (ℵ‘𝑦) ∈ On))
2117, 20imbitrrid 246 . . . . 5 (Lim 𝑥 → (∀𝑦𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On))
223, 5, 7, 5, 10, 14, 21tfinds 7790 . . . 4 (𝑦 ∈ On → (ℵ‘𝑦) ∈ On)
2322rgen 3049 . . 3 𝑦 ∈ On (ℵ‘𝑦) ∈ On
24 ffnfv 7052 . . 3 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On))
251, 23, 24mpbir2an 711 . 2 ℵ:On⟶On
26 0elon 6361 . 2 ∅ ∈ On
2725, 26f0cli 7031 1 (ℵ‘𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  c0 4280   ciun 4939  Oncon0 6306  Lim wlim 6307  suc csuc 6308   Fn wfn 6476  wf 6477  cfv 6481  ωcom 7796  harchar 9442  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-en 8870  df-dom 8871  df-oi 9396  df-har 9443  df-aleph 9833
This theorem is referenced by:  alephnbtwn  9962  alephnbtwn2  9963  alephordilem1  9964  alephord  9966  alephord2  9967  alephord3  9969  alephsucdom  9970  alephsuc2  9971  alephf1  9976  alephsdom  9977  alephdom2  9978  alephle  9979  cardaleph  9980  alephf1ALT  9994  alephfp  9999  dfac12k  10039  alephsing  10167  alephval2  10463  alephadd  10468  alephmul  10469  alephexp1  10470  alephsuc3  10471  alephreg  10473  pwcfsdom  10474  cfpwsdom  10475  gchaleph  10562  gchaleph2  10563  gch2  10566  minregex2  43576  alephiso2  43599
  Copyright terms: Public domain W3C validator