| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephon | Structured version Visualization version GIF version | ||
| Description: An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| alephon | ⊢ (ℵ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon 9994 | . . 3 ⊢ ℵ Fn On | |
| 2 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅)) | |
| 3 | 2 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = ∅ → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘∅) ∈ On)) |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
| 5 | 4 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘𝑦) ∈ On)) |
| 6 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | |
| 7 | 6 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → ((ℵ‘𝑥) ∈ On ↔ (ℵ‘suc 𝑦) ∈ On)) |
| 8 | aleph0 9995 | . . . . . 6 ⊢ (ℵ‘∅) = ω | |
| 9 | omelon 9575 | . . . . . 6 ⊢ ω ∈ On | |
| 10 | 8, 9 | eqeltri 2824 | . . . . 5 ⊢ (ℵ‘∅) ∈ On |
| 11 | alephsuc 9997 | . . . . . . 7 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦))) | |
| 12 | harcl 9488 | . . . . . . 7 ⊢ (har‘(ℵ‘𝑦)) ∈ On | |
| 13 | 11, 12 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑦 ∈ On → (ℵ‘suc 𝑦) ∈ On) |
| 14 | 13 | a1d 25 | . . . . 5 ⊢ (𝑦 ∈ On → ((ℵ‘𝑦) ∈ On → (ℵ‘suc 𝑦) ∈ On)) |
| 15 | vex 3448 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 16 | iunon 8285 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) | |
| 17 | 15, 16 | mpan 690 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On) |
| 18 | alephlim 9996 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | |
| 19 | 15, 18 | mpan 690 | . . . . . . 7 ⊢ (Lim 𝑥 → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 20 | 19 | eleq1d 2813 | . . . . . 6 ⊢ (Lim 𝑥 → ((ℵ‘𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On)) |
| 21 | 17, 20 | imbitrrid 246 | . . . . 5 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ On → (ℵ‘𝑥) ∈ On)) |
| 22 | 3, 5, 7, 5, 10, 14, 21 | tfinds 7816 | . . . 4 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ On) |
| 23 | 22 | rgen 3046 | . . 3 ⊢ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On |
| 24 | ffnfv 7073 | . . 3 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ∀𝑦 ∈ On (ℵ‘𝑦) ∈ On)) | |
| 25 | 1, 23, 24 | mpbir2an 711 | . 2 ⊢ ℵ:On⟶On |
| 26 | 0elon 6375 | . 2 ⊢ ∅ ∈ On | |
| 27 | 25, 26 | f0cli 7052 | 1 ⊢ (ℵ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∅c0 4292 ∪ ciun 4951 Oncon0 6320 Lim wlim 6321 suc csuc 6322 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 ωcom 7822 harchar 9485 ℵcale 9865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-en 8896 df-dom 8897 df-oi 9439 df-har 9486 df-aleph 9869 |
| This theorem is referenced by: alephnbtwn 10000 alephnbtwn2 10001 alephordilem1 10002 alephord 10004 alephord2 10005 alephord3 10007 alephsucdom 10008 alephsuc2 10009 alephf1 10014 alephsdom 10015 alephdom2 10016 alephle 10017 cardaleph 10018 alephf1ALT 10032 alephfp 10037 dfac12k 10077 alephsing 10205 alephval2 10501 alephadd 10506 alephmul 10507 alephexp1 10508 alephsuc3 10509 alephreg 10511 pwcfsdom 10512 cfpwsdom 10513 gchaleph 10600 gchaleph2 10601 gch2 10604 minregex2 43497 alephiso2 43520 |
| Copyright terms: Public domain | W3C validator |