| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version | ||
| Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| rankon | ⊢ (rank‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9690 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | 0elon 6362 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7032 | 1 ⊢ (rank‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cuni 4858 “ cima 5622 Oncon0 6307 ‘cfv 6482 𝑅1cr1 9658 rankcrnk 9659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 |
| This theorem is referenced by: rankr1ai 9694 rankr1bg 9699 rankr1clem 9716 rankr1c 9717 rankpwi 9719 rankelb 9720 wfelirr 9721 rankval3b 9722 ranksnb 9723 rankr1a 9732 bndrank 9737 unbndrank 9738 rankunb 9746 rankprb 9747 rankuni2b 9749 rankuni 9759 rankuniss 9762 rankval4 9763 rankbnd2 9765 rankc1 9766 rankc2 9767 rankelun 9768 rankelpr 9769 rankelop 9770 rankmapu 9774 rankxplim 9775 rankxplim3 9777 rankxpsuc 9778 tcrank 9780 scottex 9781 scott0 9782 dfac12lem2 10039 hsmexlem5 10324 r1limwun 10630 wunex3 10635 rankcf 10671 grur1 10714 onvf1odlem4 35099 elhf2 36169 hfuni 36178 dfac11 43055 gruex 44291 |
| Copyright terms: Public domain | W3C validator |