![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version |
Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
rankon | ⊢ (rank‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankf 9863 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
2 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 7132 | 1 ⊢ (rank‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cuni 4931 “ cima 5703 Oncon0 6395 ‘cfv 6573 𝑅1cr1 9831 rankcrnk 9832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-rank 9834 |
This theorem is referenced by: rankr1ai 9867 rankr1bg 9872 rankr1clem 9889 rankr1c 9890 rankpwi 9892 rankelb 9893 wfelirr 9894 rankval3b 9895 ranksnb 9896 rankr1a 9905 bndrank 9910 unbndrank 9911 rankunb 9919 rankprb 9920 rankuni2b 9922 rankuni 9932 rankuniss 9935 rankval4 9936 rankbnd2 9938 rankc1 9939 rankc2 9940 rankelun 9941 rankelpr 9942 rankelop 9943 rankmapu 9947 rankxplim 9948 rankxplim3 9950 rankxpsuc 9951 tcrank 9953 scottex 9954 scott0 9955 dfac12lem2 10214 hsmexlem5 10499 r1limwun 10805 wunex3 10810 rankcf 10846 grur1 10889 elhf2 36139 hfuni 36148 dfac11 43019 gruex 44267 |
Copyright terms: Public domain | W3C validator |