| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version | ||
| Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| rankon | ⊢ (rank‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9723 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | 0elon 6375 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7052 | 1 ⊢ (rank‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cuni 4867 “ cima 5634 Oncon0 6320 ‘cfv 6499 𝑅1cr1 9691 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: rankr1ai 9727 rankr1bg 9732 rankr1clem 9749 rankr1c 9750 rankpwi 9752 rankelb 9753 wfelirr 9754 rankval3b 9755 ranksnb 9756 rankr1a 9765 bndrank 9770 unbndrank 9771 rankunb 9779 rankprb 9780 rankuni2b 9782 rankuni 9792 rankuniss 9795 rankval4 9796 rankbnd2 9798 rankc1 9799 rankc2 9800 rankelun 9801 rankelpr 9802 rankelop 9803 rankmapu 9807 rankxplim 9808 rankxplim3 9810 rankxpsuc 9811 tcrank 9813 scottex 9814 scott0 9815 dfac12lem2 10074 hsmexlem5 10359 r1limwun 10665 wunex3 10670 rankcf 10706 grur1 10749 onvf1odlem4 35086 elhf2 36156 hfuni 36165 dfac11 43044 gruex 44280 |
| Copyright terms: Public domain | W3C validator |