Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version |
Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
rankon | ⊢ (rank‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankf 9483 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
2 | 0elon 6304 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6956 | 1 ⊢ (rank‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cuni 4836 “ cima 5583 Oncon0 6251 ‘cfv 6418 𝑅1cr1 9451 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: rankr1ai 9487 rankr1bg 9492 rankr1clem 9509 rankr1c 9510 rankpwi 9512 rankelb 9513 wfelirr 9514 rankval3b 9515 ranksnb 9516 rankr1a 9525 bndrank 9530 unbndrank 9531 rankunb 9539 rankprb 9540 rankuni2b 9542 rankuni 9552 rankuniss 9555 rankval4 9556 rankbnd2 9558 rankc1 9559 rankc2 9560 rankelun 9561 rankelpr 9562 rankelop 9563 rankmapu 9567 rankxplim 9568 rankxplim3 9570 rankxpsuc 9571 tcrank 9573 scottex 9574 scott0 9575 dfac12lem2 9831 hsmexlem5 10117 r1limwun 10423 wunex3 10428 rankcf 10464 grur1 10507 elhf2 34404 hfuni 34413 dfac11 40803 gruex 41805 |
Copyright terms: Public domain | W3C validator |