| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version | ||
| Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| rankon | ⊢ (rank‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9808 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | 0elon 6407 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7088 | 1 ⊢ (rank‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∪ cuni 4883 “ cima 5657 Oncon0 6352 ‘cfv 6531 𝑅1cr1 9776 rankcrnk 9777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: rankr1ai 9812 rankr1bg 9817 rankr1clem 9834 rankr1c 9835 rankpwi 9837 rankelb 9838 wfelirr 9839 rankval3b 9840 ranksnb 9841 rankr1a 9850 bndrank 9855 unbndrank 9856 rankunb 9864 rankprb 9865 rankuni2b 9867 rankuni 9877 rankuniss 9880 rankval4 9881 rankbnd2 9883 rankc1 9884 rankc2 9885 rankelun 9886 rankelpr 9887 rankelop 9888 rankmapu 9892 rankxplim 9893 rankxplim3 9895 rankxpsuc 9896 tcrank 9898 scottex 9899 scott0 9900 dfac12lem2 10159 hsmexlem5 10444 r1limwun 10750 wunex3 10755 rankcf 10791 grur1 10834 elhf2 36193 hfuni 36202 dfac11 43086 gruex 44322 |
| Copyright terms: Public domain | W3C validator |