| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version | ||
| Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
| Ref | Expression |
|---|---|
| rankon | ⊢ (rank‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankf 9687 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
| 2 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7031 | 1 ⊢ (rank‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∪ cuni 4856 “ cima 5617 Oncon0 6306 ‘cfv 6481 𝑅1cr1 9655 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: rankr1ai 9691 rankr1bg 9696 rankr1clem 9713 rankr1c 9714 rankpwi 9716 rankelb 9717 wfelirr 9718 rankval3b 9719 ranksnb 9720 rankr1a 9729 bndrank 9734 unbndrank 9735 rankunb 9743 rankprb 9744 rankuni2b 9746 rankuni 9756 rankuniss 9759 rankval4 9760 rankbnd2 9762 rankc1 9763 rankc2 9764 rankelun 9765 rankelpr 9766 rankelop 9767 rankmapu 9771 rankxplim 9772 rankxplim3 9774 rankxpsuc 9775 tcrank 9777 scottex 9778 scott0 9779 dfac12lem2 10036 hsmexlem5 10321 r1limwun 10627 wunex3 10632 rankcf 10668 grur1 10711 rankval4b 35111 onvf1odlem4 35150 elhf2 36219 hfuni 36228 dfac11 43154 gruex 44390 |
| Copyright terms: Public domain | W3C validator |