![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version |
Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
rankon | ⊢ (rank‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankf 9832 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
2 | 0elon 6440 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 7118 | 1 ⊢ (rank‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cuni 4912 “ cima 5692 Oncon0 6386 ‘cfv 6563 𝑅1cr1 9800 rankcrnk 9801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 |
This theorem is referenced by: rankr1ai 9836 rankr1bg 9841 rankr1clem 9858 rankr1c 9859 rankpwi 9861 rankelb 9862 wfelirr 9863 rankval3b 9864 ranksnb 9865 rankr1a 9874 bndrank 9879 unbndrank 9880 rankunb 9888 rankprb 9889 rankuni2b 9891 rankuni 9901 rankuniss 9904 rankval4 9905 rankbnd2 9907 rankc1 9908 rankc2 9909 rankelun 9910 rankelpr 9911 rankelop 9912 rankmapu 9916 rankxplim 9917 rankxplim3 9919 rankxpsuc 9920 tcrank 9922 scottex 9923 scott0 9924 dfac12lem2 10183 hsmexlem5 10468 r1limwun 10774 wunex3 10779 rankcf 10815 grur1 10858 elhf2 36157 hfuni 36166 dfac11 43051 gruex 44294 |
Copyright terms: Public domain | W3C validator |