Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankon | Structured version Visualization version GIF version |
Description: The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
Ref | Expression |
---|---|
rankon | ⊢ (rank‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankf 9440 | . 2 ⊢ rank:∪ (𝑅1 “ On)⟶On | |
2 | 0elon 6287 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6939 | 1 ⊢ (rank‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ∪ cuni 4836 “ cima 5572 Oncon0 6234 ‘cfv 6401 𝑅1cr1 9408 rankcrnk 9409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-om 7667 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-r1 9410 df-rank 9411 |
This theorem is referenced by: rankr1ai 9444 rankr1bg 9449 rankr1clem 9466 rankr1c 9467 rankpwi 9469 rankelb 9470 wfelirr 9471 rankval3b 9472 ranksnb 9473 rankr1a 9482 bndrank 9487 unbndrank 9488 rankunb 9496 rankprb 9497 rankuni2b 9499 rankuni 9509 rankuniss 9512 rankval4 9513 rankbnd2 9515 rankc1 9516 rankc2 9517 rankelun 9518 rankelpr 9519 rankelop 9520 rankmapu 9524 rankxplim 9525 rankxplim3 9527 rankxpsuc 9528 tcrank 9530 scottex 9531 scott0 9532 dfac12lem2 9788 hsmexlem5 10074 r1limwun 10380 wunex3 10385 rankcf 10421 grur1 10464 elhf2 34248 hfuni 34257 dfac11 40638 gruex 41637 |
Copyright terms: Public domain | W3C validator |