![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | ⊢ (card‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9980 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 0elon 6439 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 7117 | 1 ⊢ (card‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 {cab 2711 ∃wrex 3067 class class class wbr 5147 Oncon0 6385 ‘cfv 6562 ≈ cen 8980 cardccrd 9972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-card 9976 |
This theorem is referenced by: isnum3 9991 cardidm 9996 ficardom 9998 cardne 10002 carden2b 10004 cardlim 10009 cardsdomelir 10010 cardsdomel 10011 iscard 10012 iscard2 10013 carddom2 10014 carduni 10018 cardom 10023 cardsdom2 10025 domtri2 10026 cardval2 10028 infxpidm2 10054 dfac8b 10068 numdom 10075 indcardi 10078 alephnbtwn 10108 alephnbtwn2 10109 alephsucdom 10116 cardaleph 10126 iscard3 10130 alephinit 10132 alephsson 10137 alephval3 10147 dfac12r 10184 dfac12k 10185 cardadju 10232 djunum 10233 pwsdompw 10240 cff 10285 cardcf 10289 cfon 10292 cfeq0 10293 cfsuc 10294 cff1 10295 cfflb 10296 cflim2 10300 cfss 10302 fin1a2lem9 10445 ttukeylem6 10551 ttukeylem7 10552 unsnen 10590 inar1 10812 tskcard 10818 tskuni 10820 gruina 10855 iscard4 43522 minregex 43523 |
Copyright terms: Public domain | W3C validator |