![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | ⊢ (card‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9104 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 0elon 6031 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6636 | 1 ⊢ (card‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 {cab 2763 ∃wrex 3091 class class class wbr 4888 Oncon0 5978 ‘cfv 6137 ≈ cen 8240 cardccrd 9096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-ord 5981 df-on 5982 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-card 9100 |
This theorem is referenced by: isnum3 9115 cardidm 9120 ficardom 9122 cardne 9126 carden2b 9128 cardlim 9133 cardsdomelir 9134 cardsdomel 9135 iscard 9136 iscard2 9137 carddom2 9138 carduni 9142 cardom 9147 cardsdom2 9149 domtri2 9150 cardval2 9152 infxpidm2 9175 dfac8b 9189 numdom 9196 indcardi 9199 alephnbtwn 9229 alephnbtwn2 9230 alephsucdom 9237 cardaleph 9247 iscard3 9251 alephinit 9253 alephsson 9258 alephval3 9268 dfac12r 9305 dfac12k 9306 cardacda 9357 cdanum 9358 pwsdompw 9363 cff 9407 cardcf 9411 cfon 9414 cfeq0 9415 cfsuc 9416 cff1 9417 cfflb 9418 cflim2 9422 cfss 9424 fin1a2lem9 9567 ttukeylem6 9673 ttukeylem7 9674 unsnen 9712 inar1 9934 tskcard 9940 tskuni 9942 gruina 9977 |
Copyright terms: Public domain | W3C validator |