![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | ⊢ (card‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 10012 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 7132 | 1 ⊢ (card‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2717 ∃wrex 3076 class class class wbr 5166 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-card 10008 |
This theorem is referenced by: isnum3 10023 cardidm 10028 ficardom 10030 cardne 10034 carden2b 10036 cardlim 10041 cardsdomelir 10042 cardsdomel 10043 iscard 10044 iscard2 10045 carddom2 10046 carduni 10050 cardom 10055 cardsdom2 10057 domtri2 10058 cardval2 10060 infxpidm2 10086 dfac8b 10100 numdom 10107 indcardi 10110 alephnbtwn 10140 alephnbtwn2 10141 alephsucdom 10148 cardaleph 10158 iscard3 10162 alephinit 10164 alephsson 10169 alephval3 10179 dfac12r 10216 dfac12k 10217 cardadju 10264 djunum 10265 pwsdompw 10272 cff 10317 cardcf 10321 cfon 10324 cfeq0 10325 cfsuc 10326 cff1 10327 cfflb 10328 cflim2 10332 cfss 10334 fin1a2lem9 10477 ttukeylem6 10583 ttukeylem7 10584 unsnen 10622 inar1 10844 tskcard 10850 tskuni 10852 gruina 10887 iscard4 43495 minregex 43496 |
Copyright terms: Public domain | W3C validator |