| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardon | ⊢ (card‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9957 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 0elon 6407 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7088 | 1 ⊢ (card‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {cab 2713 ∃wrex 3060 class class class wbr 5119 Oncon0 6352 ‘cfv 6531 ≈ cen 8956 cardccrd 9949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-card 9953 |
| This theorem is referenced by: isnum3 9968 cardidm 9973 ficardom 9975 cardne 9979 carden2b 9981 cardlim 9986 cardsdomelir 9987 cardsdomel 9988 iscard 9989 iscard2 9990 carddom2 9991 carduni 9995 cardom 10000 cardsdom2 10002 domtri2 10003 cardval2 10005 infxpidm2 10031 dfac8b 10045 numdom 10052 indcardi 10055 alephnbtwn 10085 alephnbtwn2 10086 alephsucdom 10093 cardaleph 10103 iscard3 10107 alephinit 10109 alephsson 10114 alephval3 10124 dfac12r 10161 dfac12k 10162 cardadju 10209 djunum 10210 pwsdompw 10217 cff 10262 cardcf 10266 cfon 10269 cfeq0 10270 cfsuc 10271 cff1 10272 cfflb 10273 cflim2 10277 cfss 10279 fin1a2lem9 10422 ttukeylem6 10528 ttukeylem7 10529 unsnen 10567 inar1 10789 tskcard 10795 tskuni 10797 gruina 10832 iscard4 43557 minregex 43558 |
| Copyright terms: Public domain | W3C validator |