MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardon Structured version   Visualization version   GIF version

Theorem cardon 9633
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
cardon (card‘𝐴) ∈ On

Proof of Theorem cardon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9632 . 2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 0elon 6304 . 2 ∅ ∈ On
31, 2f0cli 6956 1 (card‘𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2715  wrex 3064   class class class wbr 5070  Oncon0 6251  cfv 6418  cen 8688  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-card 9628
This theorem is referenced by:  isnum3  9643  cardidm  9648  ficardom  9650  cardne  9654  carden2b  9656  cardlim  9661  cardsdomelir  9662  cardsdomel  9663  iscard  9664  iscard2  9665  carddom2  9666  carduni  9670  cardom  9675  cardsdom2  9677  domtri2  9678  cardval2  9680  infxpidm2  9704  dfac8b  9718  numdom  9725  indcardi  9728  alephnbtwn  9758  alephnbtwn2  9759  alephsucdom  9766  cardaleph  9776  iscard3  9780  alephinit  9782  alephsson  9787  alephval3  9797  dfac12r  9833  dfac12k  9834  cardadju  9881  djunum  9882  pwsdompw  9891  cff  9935  cardcf  9939  cfon  9942  cfeq0  9943  cfsuc  9944  cff1  9945  cfflb  9946  cflim2  9950  cfss  9952  fin1a2lem9  10095  ttukeylem6  10201  ttukeylem7  10202  unsnen  10240  inar1  10462  tskcard  10468  tskuni  10470  gruina  10505  iscard4  41038
  Copyright terms: Public domain W3C validator