| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardon | ⊢ (card‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9836 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7031 | 1 ⊢ (card‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {cab 2709 ∃wrex 3056 class class class wbr 5089 Oncon0 6306 ‘cfv 6481 ≈ cen 8866 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-card 9832 |
| This theorem is referenced by: isnum3 9847 cardidm 9852 ficardom 9854 cardne 9858 carden2b 9860 cardlim 9865 cardsdomelir 9866 cardsdomel 9867 iscard 9868 iscard2 9869 carddom2 9870 carduni 9874 cardom 9879 cardsdom2 9881 domtri2 9882 cardval2 9884 infxpidm2 9908 dfac8b 9922 numdom 9929 indcardi 9932 alephnbtwn 9962 alephnbtwn2 9963 alephsucdom 9970 cardaleph 9980 iscard3 9984 alephinit 9986 alephsson 9991 alephval3 10001 dfac12r 10038 dfac12k 10039 cardadju 10086 djunum 10087 pwsdompw 10094 cff 10139 cardcf 10143 cfon 10146 cfeq0 10147 cfsuc 10148 cff1 10149 cfflb 10150 cflim2 10154 cfss 10156 fin1a2lem9 10299 ttukeylem6 10405 ttukeylem7 10406 unsnen 10444 inar1 10666 tskcard 10672 tskuni 10674 gruina 10709 iscard4 43636 minregex 43637 |
| Copyright terms: Public domain | W3C validator |