Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | ⊢ (card‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9632 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
2 | 0elon 6304 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6956 | 1 ⊢ (card‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2715 ∃wrex 3064 class class class wbr 5070 Oncon0 6251 ‘cfv 6418 ≈ cen 8688 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-card 9628 |
This theorem is referenced by: isnum3 9643 cardidm 9648 ficardom 9650 cardne 9654 carden2b 9656 cardlim 9661 cardsdomelir 9662 cardsdomel 9663 iscard 9664 iscard2 9665 carddom2 9666 carduni 9670 cardom 9675 cardsdom2 9677 domtri2 9678 cardval2 9680 infxpidm2 9704 dfac8b 9718 numdom 9725 indcardi 9728 alephnbtwn 9758 alephnbtwn2 9759 alephsucdom 9766 cardaleph 9776 iscard3 9780 alephinit 9782 alephsson 9787 alephval3 9797 dfac12r 9833 dfac12k 9834 cardadju 9881 djunum 9882 pwsdompw 9891 cff 9935 cardcf 9939 cfon 9942 cfeq0 9943 cfsuc 9944 cff1 9945 cfflb 9946 cflim2 9950 cfss 9952 fin1a2lem9 10095 ttukeylem6 10201 ttukeylem7 10202 unsnen 10240 inar1 10462 tskcard 10468 tskuni 10470 gruina 10505 iscard4 41038 |
Copyright terms: Public domain | W3C validator |