| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardon | ⊢ (card‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9896 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 0elon 6387 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7070 | 1 ⊢ (card‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5107 Oncon0 6332 ‘cfv 6511 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-card 9892 |
| This theorem is referenced by: isnum3 9907 cardidm 9912 ficardom 9914 cardne 9918 carden2b 9920 cardlim 9925 cardsdomelir 9926 cardsdomel 9927 iscard 9928 iscard2 9929 carddom2 9930 carduni 9934 cardom 9939 cardsdom2 9941 domtri2 9942 cardval2 9944 infxpidm2 9970 dfac8b 9984 numdom 9991 indcardi 9994 alephnbtwn 10024 alephnbtwn2 10025 alephsucdom 10032 cardaleph 10042 iscard3 10046 alephinit 10048 alephsson 10053 alephval3 10063 dfac12r 10100 dfac12k 10101 cardadju 10148 djunum 10149 pwsdompw 10156 cff 10201 cardcf 10205 cfon 10208 cfeq0 10209 cfsuc 10210 cff1 10211 cfflb 10212 cflim2 10216 cfss 10218 fin1a2lem9 10361 ttukeylem6 10467 ttukeylem7 10468 unsnen 10506 inar1 10728 tskcard 10734 tskuni 10736 gruina 10771 iscard4 43522 minregex 43523 |
| Copyright terms: Public domain | W3C validator |