MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardon Structured version   Visualization version   GIF version

Theorem cardon 9702
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
cardon (card‘𝐴) ∈ On

Proof of Theorem cardon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9701 . 2 card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦𝑥}⟶On
2 0elon 6319 . 2 ∅ ∈ On
31, 2f0cli 6974 1 (card‘𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2715  wrex 3065   class class class wbr 5074  Oncon0 6266  cfv 6433  cen 8730  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-card 9697
This theorem is referenced by:  isnum3  9712  cardidm  9717  ficardom  9719  cardne  9723  carden2b  9725  cardlim  9730  cardsdomelir  9731  cardsdomel  9732  iscard  9733  iscard2  9734  carddom2  9735  carduni  9739  cardom  9744  cardsdom2  9746  domtri2  9747  cardval2  9749  infxpidm2  9773  dfac8b  9787  numdom  9794  indcardi  9797  alephnbtwn  9827  alephnbtwn2  9828  alephsucdom  9835  cardaleph  9845  iscard3  9849  alephinit  9851  alephsson  9856  alephval3  9866  dfac12r  9902  dfac12k  9903  cardadju  9950  djunum  9951  pwsdompw  9960  cff  10004  cardcf  10008  cfon  10011  cfeq0  10012  cfsuc  10013  cff1  10014  cfflb  10015  cflim2  10019  cfss  10021  fin1a2lem9  10164  ttukeylem6  10270  ttukeylem7  10271  unsnen  10309  inar1  10531  tskcard  10537  tskuni  10539  gruina  10574  iscard4  41140  minregex  41141
  Copyright terms: Public domain W3C validator