| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardon | ⊢ (card‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9839 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 0elon 6362 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7032 | 1 ⊢ (card‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 ∃wrex 3053 class class class wbr 5092 Oncon0 6307 ‘cfv 6482 ≈ cen 8869 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-card 9835 |
| This theorem is referenced by: isnum3 9850 cardidm 9855 ficardom 9857 cardne 9861 carden2b 9863 cardlim 9868 cardsdomelir 9869 cardsdomel 9870 iscard 9871 iscard2 9872 carddom2 9873 carduni 9877 cardom 9882 cardsdom2 9884 domtri2 9885 cardval2 9887 infxpidm2 9911 dfac8b 9925 numdom 9932 indcardi 9935 alephnbtwn 9965 alephnbtwn2 9966 alephsucdom 9973 cardaleph 9983 iscard3 9987 alephinit 9989 alephsson 9994 alephval3 10004 dfac12r 10041 dfac12k 10042 cardadju 10089 djunum 10090 pwsdompw 10097 cff 10142 cardcf 10146 cfon 10149 cfeq0 10150 cfsuc 10151 cff1 10152 cfflb 10153 cflim2 10157 cfss 10159 fin1a2lem9 10302 ttukeylem6 10408 ttukeylem7 10409 unsnen 10447 inar1 10669 tskcard 10675 tskuni 10677 gruina 10712 iscard4 43510 minregex 43511 |
| Copyright terms: Public domain | W3C validator |