| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version | ||
| Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| cardon | ⊢ (card‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardf2 9903 | . 2 ⊢ card:{𝑥 ∣ ∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On | |
| 2 | 0elon 6390 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7073 | 1 ⊢ (card‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 ∃wrex 3054 class class class wbr 5110 Oncon0 6335 ‘cfv 6514 ≈ cen 8918 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-card 9899 |
| This theorem is referenced by: isnum3 9914 cardidm 9919 ficardom 9921 cardne 9925 carden2b 9927 cardlim 9932 cardsdomelir 9933 cardsdomel 9934 iscard 9935 iscard2 9936 carddom2 9937 carduni 9941 cardom 9946 cardsdom2 9948 domtri2 9949 cardval2 9951 infxpidm2 9977 dfac8b 9991 numdom 9998 indcardi 10001 alephnbtwn 10031 alephnbtwn2 10032 alephsucdom 10039 cardaleph 10049 iscard3 10053 alephinit 10055 alephsson 10060 alephval3 10070 dfac12r 10107 dfac12k 10108 cardadju 10155 djunum 10156 pwsdompw 10163 cff 10208 cardcf 10212 cfon 10215 cfeq0 10216 cfsuc 10217 cff1 10218 cfflb 10219 cflim2 10223 cfss 10225 fin1a2lem9 10368 ttukeylem6 10474 ttukeylem7 10475 unsnen 10513 inar1 10735 tskcard 10741 tskuni 10743 gruina 10778 iscard4 43529 minregex 43530 |
| Copyright terms: Public domain | W3C validator |