![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardon | Structured version Visualization version GIF version |
Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 7-Jan-2013.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
cardon | β’ (cardβπ΄) β On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardf2 9938 | . 2 β’ card:{π₯ β£ βπ¦ β On π¦ β π₯}βΆOn | |
2 | 0elon 6419 | . 2 β’ β β On | |
3 | 1, 2 | f0cli 7100 | 1 β’ (cardβπ΄) β On |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2107 {cab 2710 βwrex 3071 class class class wbr 5149 Oncon0 6365 βcfv 6544 β cen 8936 cardccrd 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-card 9934 |
This theorem is referenced by: isnum3 9949 cardidm 9954 ficardom 9956 cardne 9960 carden2b 9962 cardlim 9967 cardsdomelir 9968 cardsdomel 9969 iscard 9970 iscard2 9971 carddom2 9972 carduni 9976 cardom 9981 cardsdom2 9983 domtri2 9984 cardval2 9986 infxpidm2 10012 dfac8b 10026 numdom 10033 indcardi 10036 alephnbtwn 10066 alephnbtwn2 10067 alephsucdom 10074 cardaleph 10084 iscard3 10088 alephinit 10090 alephsson 10095 alephval3 10105 dfac12r 10141 dfac12k 10142 cardadju 10189 djunum 10190 pwsdompw 10199 cff 10243 cardcf 10247 cfon 10250 cfeq0 10251 cfsuc 10252 cff1 10253 cfflb 10254 cflim2 10258 cfss 10260 fin1a2lem9 10403 ttukeylem6 10509 ttukeylem7 10510 unsnen 10548 inar1 10770 tskcard 10776 tskuni 10778 gruina 10813 iscard4 42284 minregex 42285 |
Copyright terms: Public domain | W3C validator |