MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupf Structured version   Visualization version   GIF version

Theorem smupf 16512
Description: The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smupf (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smupf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12539 . . . . 5 0 ∈ ℕ0
2 iftrue 4537 . . . . . 6 (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅)
3 eqid 2735 . . . . . 6 (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))
4 0ex 5313 . . . . . 6 ∅ ∈ V
52, 3, 4fvmpt 7016 . . . . 5 (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅)
61, 5mp1i 13 . . . 4 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅)
7 0elpw 5362 . . . 4 ∅ ∈ 𝒫 ℕ0
86, 7eqeltrdi 2847 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 𝒫 ℕ0)
9 df-ov 7434 . . . . 5 (𝑥(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑦) = ((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))‘⟨𝑥, 𝑦⟩)
10 elpwi 4612 . . . . . . . . . . 11 (𝑝 ∈ 𝒫 ℕ0𝑝 ⊆ ℕ0)
1110adantr 480 . . . . . . . . . 10 ((𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → 𝑝 ⊆ ℕ0)
12 ssrab2 4090 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} ⊆ ℕ0
13 sadcl 16496 . . . . . . . . . 10 ((𝑝 ⊆ ℕ0 ∧ {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)} ⊆ ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ⊆ ℕ0)
1411, 12, 13sylancl 586 . . . . . . . . 9 ((𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ⊆ ℕ0)
15 nn0ex 12530 . . . . . . . . . 10 0 ∈ V
1615elpw2 5340 . . . . . . . . 9 ((𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ∈ 𝒫 ℕ0 ↔ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ⊆ ℕ0)
1714, 16sylibr 234 . . . . . . . 8 ((𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ∈ 𝒫 ℕ0)
1817rgen2 3197 . . . . . . 7 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0 (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ∈ 𝒫 ℕ0
19 eqid 2735 . . . . . . . 8 (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})) = (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))
2019fmpo 8092 . . . . . . 7 (∀𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0 (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}) ∈ 𝒫 ℕ0 ↔ (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})):(𝒫 ℕ0 × ℕ0)⟶𝒫 ℕ0)
2118, 20mpbi 230 . . . . . 6 (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})):(𝒫 ℕ0 × ℕ0)⟶𝒫 ℕ0
2221, 7f0cli 7118 . . . . 5 ((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))‘⟨𝑥, 𝑦⟩) ∈ 𝒫 ℕ0
239, 22eqeltri 2835 . . . 4 (𝑥(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑦) ∈ 𝒫 ℕ0
2423a1i 11 . . 3 ((𝜑 ∧ (𝑥 ∈ 𝒫 ℕ0𝑦 ∈ V)) → (𝑥(𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))𝑦) ∈ 𝒫 ℕ0)
25 nn0uz 12918 . . 3 0 = (ℤ‘0)
26 0zd 12623 . . 3 (𝜑 → 0 ∈ ℤ)
27 fvexd 6922 . . 3 ((𝜑𝑥 ∈ (ℤ‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V)
288, 24, 25, 26, 27seqf2 14059 . 2 (𝜑 → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶𝒫 ℕ0)
29 smuval.p . . 3 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
3029feq1i 6728 . 2 (𝑃:ℕ0⟶𝒫 ℕ0 ↔ seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶𝒫 ℕ0)
3128, 30sylibr 234 1 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  wss 3963  c0 4339  ifcif 4531  𝒫 cpw 4605  cop 4637  cmpt 5231   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  0cn0 12524  cuz 12876  seqcseq 14039   sadd csad 16454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1540  df-fal 1550  df-had 1591  df-cad 1604  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040  df-sad 16485
This theorem is referenced by:  smupp1  16514  smuval2  16516  smupvallem  16517  smueqlem  16524
  Copyright terms: Public domain W3C validator