MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupf Structured version   Visualization version   GIF version

Theorem smupf 16415
Description: The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (πœ‘ β†’ 𝐴 βŠ† β„•0)
smuval.b (πœ‘ β†’ 𝐡 βŠ† β„•0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1))))
Assertion
Ref Expression
smupf (πœ‘ β†’ 𝑃:β„•0βŸΆπ’« β„•0)
Distinct variable groups:   π‘š,𝑛,𝑝,𝐴   πœ‘,𝑛   𝐡,π‘š,𝑛,𝑝
Allowed substitution hints:   πœ‘(π‘š,𝑝)   𝑃(π‘š,𝑛,𝑝)

Proof of Theorem smupf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12483 . . . . 5 0 ∈ β„•0
2 iftrue 4533 . . . . . 6 (𝑛 = 0 β†’ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)) = βˆ…)
3 eqid 2732 . . . . . 6 (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1))) = (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))
4 0ex 5306 . . . . . 6 βˆ… ∈ V
52, 3, 4fvmpt 6995 . . . . 5 (0 ∈ β„•0 β†’ ((𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))β€˜0) = βˆ…)
61, 5mp1i 13 . . . 4 (πœ‘ β†’ ((𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))β€˜0) = βˆ…)
7 0elpw 5353 . . . 4 βˆ… ∈ 𝒫 β„•0
86, 7eqeltrdi 2841 . . 3 (πœ‘ β†’ ((𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))β€˜0) ∈ 𝒫 β„•0)
9 df-ov 7408 . . . . 5 (π‘₯(𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))𝑦) = ((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))β€˜βŸ¨π‘₯, π‘¦βŸ©)
10 elpwi 4608 . . . . . . . . . . 11 (𝑝 ∈ 𝒫 β„•0 β†’ 𝑝 βŠ† β„•0)
1110adantr 481 . . . . . . . . . 10 ((𝑝 ∈ 𝒫 β„•0 ∧ π‘š ∈ β„•0) β†’ 𝑝 βŠ† β„•0)
12 ssrab2 4076 . . . . . . . . . 10 {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)} βŠ† β„•0
13 sadcl 16399 . . . . . . . . . 10 ((𝑝 βŠ† β„•0 ∧ {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)} βŠ† β„•0) β†’ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) βŠ† β„•0)
1411, 12, 13sylancl 586 . . . . . . . . 9 ((𝑝 ∈ 𝒫 β„•0 ∧ π‘š ∈ β„•0) β†’ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) βŠ† β„•0)
15 nn0ex 12474 . . . . . . . . . 10 β„•0 ∈ V
1615elpw2 5344 . . . . . . . . 9 ((𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) ∈ 𝒫 β„•0 ↔ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) βŠ† β„•0)
1714, 16sylibr 233 . . . . . . . 8 ((𝑝 ∈ 𝒫 β„•0 ∧ π‘š ∈ β„•0) β†’ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) ∈ 𝒫 β„•0)
1817rgen2 3197 . . . . . . 7 βˆ€π‘ ∈ 𝒫 β„•0βˆ€π‘š ∈ β„•0 (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) ∈ 𝒫 β„•0
19 eqid 2732 . . . . . . . 8 (𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})) = (𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))
2019fmpo 8050 . . . . . . 7 (βˆ€π‘ ∈ 𝒫 β„•0βˆ€π‘š ∈ β„•0 (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}) ∈ 𝒫 β„•0 ↔ (𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})):(𝒫 β„•0 Γ— β„•0)βŸΆπ’« β„•0)
2118, 20mpbi 229 . . . . . 6 (𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})):(𝒫 β„•0 Γ— β„•0)βŸΆπ’« β„•0
2221, 7f0cli 7096 . . . . 5 ((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ 𝒫 β„•0
239, 22eqeltri 2829 . . . 4 (π‘₯(𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))𝑦) ∈ 𝒫 β„•0
2423a1i 11 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝒫 β„•0 ∧ 𝑦 ∈ V)) β†’ (π‘₯(𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)}))𝑦) ∈ 𝒫 β„•0)
25 nn0uz 12860 . . 3 β„•0 = (β„€β‰₯β€˜0)
26 0zd 12566 . . 3 (πœ‘ β†’ 0 ∈ β„€)
27 fvexd 6903 . . 3 ((πœ‘ ∧ π‘₯ ∈ (β„€β‰₯β€˜(0 + 1))) β†’ ((𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))β€˜π‘₯) ∈ V)
288, 24, 25, 26, 27seqf2 13983 . 2 (πœ‘ β†’ seq0((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))):β„•0βŸΆπ’« β„•0)
29 smuval.p . . 3 𝑃 = seq0((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1))))
3029feq1i 6705 . 2 (𝑃:β„•0βŸΆπ’« β„•0 ↔ seq0((𝑝 ∈ 𝒫 β„•0, π‘š ∈ β„•0 ↦ (𝑝 sadd {𝑛 ∈ β„•0 ∣ (π‘š ∈ 𝐴 ∧ (𝑛 βˆ’ π‘š) ∈ 𝐡)})), (𝑛 ∈ β„•0 ↦ if(𝑛 = 0, βˆ…, (𝑛 βˆ’ 1)))):β„•0βŸΆπ’« β„•0)
3128, 30sylibr 233 1 (πœ‘ β†’ 𝑃:β„•0βŸΆπ’« β„•0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  π’« cpw 4601  βŸ¨cop 4633   ↦ cmpt 5230   Γ— cxp 5673  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   + caddc 11109   βˆ’ cmin 11440  β„•0cn0 12468  β„€β‰₯cuz 12818  seqcseq 13962   sadd csad 16357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-sad 16388
This theorem is referenced by:  smupp1  16417  smuval2  16419  smupvallem  16420  smueqlem  16427
  Copyright terms: Public domain W3C validator