![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | β’ ( bday βπ΄) β On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27187 | . . 3 β’ bday : No βontoβOn | |
2 | fof 6805 | . . 3 β’ ( bday : No βontoβOn β bday : No βΆOn) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ bday : No βΆOn |
4 | 0elon 6418 | . 2 β’ β β On | |
5 | 3, 4 | f0cli 7099 | 1 β’ ( bday βπ΄) β On |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2106 Oncon0 6364 βΆwf 6539 βontoβwfo 6541 βcfv 6543 No csur 27150 bday cbday 27152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1o 8468 df-no 27153 df-bday 27155 |
This theorem is referenced by: nocvxminlem 27286 scutbdaybnd2lim 27326 scutbdaylt 27327 slerec 27328 bday1s 27340 cuteq1 27342 leftf 27368 rightf 27369 madebdayim 27390 oldbdayim 27391 oldirr 27392 madebdaylemold 27400 madebdaylemlrcut 27401 madebday 27402 newbday 27404 lrcut 27405 0elold 27411 cofcutr 27420 lrrecval2 27433 lrrecpo 27434 addsproplem2 27463 addsproplem4 27465 addsproplem5 27466 addsproplem6 27467 addsproplem7 27468 addsprop 27469 negsproplem2 27513 negsproplem4 27515 negsproplem5 27516 negsproplem6 27517 negsproplem7 27518 negsprop 27519 negsbdaylem 27540 mulsproplem2 27583 mulsproplem3 27584 mulsproplem4 27585 mulsproplem5 27586 mulsproplem6 27587 mulsproplem7 27588 mulsproplem8 27589 mulsproplem12 27593 mulsproplem13 27594 mulsproplem14 27595 mulsprop 27596 sltonold 27697 |
Copyright terms: Public domain | W3C validator |