| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27619 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6742 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 0elon 6368 | . 2 ⊢ ∅ ∈ On | |
| 5 | 3, 4 | f0cli 7039 | 1 ⊢ ( bday ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Oncon0 6313 ⟶wf 6484 –onto→wfo 6486 ‘cfv 6488 No csur 27581 bday cbday 27583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-1o 8393 df-no 27584 df-bday 27586 |
| This theorem is referenced by: nocvxminlem 27720 scutbdaybnd2lim 27761 scutbdaylt 27762 slerec 27763 bday1s 27778 cuteq1 27781 leftf 27813 rightf 27814 madebdayim 27836 oldbdayim 27837 oldirr 27838 madebdaylemold 27846 madebdaylemlrcut 27847 madebday 27848 newbday 27850 lrcut 27852 0elold 27858 bdayiun 27863 cofcutr 27871 lrrecval2 27886 lrrecpo 27887 addsproplem2 27916 addsproplem4 27918 addsproplem5 27919 addsproplem6 27920 addsproplem7 27921 addsprop 27922 addsbdaylem 27962 addsbday 27963 negsproplem2 27974 negsproplem4 27976 negsproplem5 27977 negsproplem6 27978 negsproplem7 27979 negsprop 27980 negsbdaylem 28001 mulsproplem2 28059 mulsproplem3 28060 mulsproplem4 28061 mulsproplem5 28062 mulsproplem6 28063 mulsproplem7 28064 mulsproplem8 28065 mulsproplem12 28069 mulsproplem13 28070 mulsproplem14 28071 mulsprop 28072 sltonold 28201 onscutlt 28204 onnolt 28206 onslt 28207 onsiso 28208 n0sbday 28283 onsfi 28286 bdayn0p1 28297 zs12bday 28397 |
| Copyright terms: Public domain | W3C validator |