| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27589 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6772 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 0elon 6387 | . 2 ⊢ ∅ ∈ On | |
| 5 | 3, 4 | f0cli 7070 | 1 ⊢ ( bday ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Oncon0 6332 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 No csur 27551 bday cbday 27553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-1o 8434 df-no 27554 df-bday 27556 |
| This theorem is referenced by: nocvxminlem 27689 scutbdaybnd2lim 27729 scutbdaylt 27730 slerec 27731 bday1s 27743 cuteq1 27746 leftf 27777 rightf 27778 madebdayim 27799 oldbdayim 27800 oldirr 27801 madebdaylemold 27809 madebdaylemlrcut 27810 madebday 27811 newbday 27813 lrcut 27815 0elold 27821 cofcutr 27832 lrrecval2 27847 lrrecpo 27848 addsproplem2 27877 addsproplem4 27879 addsproplem5 27880 addsproplem6 27881 addsproplem7 27882 addsprop 27883 addsbdaylem 27923 addsbday 27924 negsproplem2 27935 negsproplem4 27937 negsproplem5 27938 negsproplem6 27939 negsproplem7 27940 negsprop 27941 negsbdaylem 27962 mulsproplem2 28020 mulsproplem3 28021 mulsproplem4 28022 mulsproplem5 28023 mulsproplem6 28024 mulsproplem7 28025 mulsproplem8 28026 mulsproplem12 28030 mulsproplem13 28031 mulsproplem14 28032 mulsprop 28033 sltonold 28162 onscutlt 28165 onnolt 28167 onslt 28168 onsiso 28169 n0sbday 28244 onsfi 28247 bdayn0p1 28258 zs12bday 28343 |
| Copyright terms: Public domain | W3C validator |