Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 33880 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6688 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 0elon 6319 | . 2 ⊢ ∅ ∈ On | |
5 | 3, 4 | f0cli 6974 | 1 ⊢ ( bday ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 6266 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 No csur 33843 bday cbday 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1o 8297 df-no 33846 df-bday 33848 |
This theorem is referenced by: nocvxminlem 33972 scutbdaybnd2lim 34011 scutbdaylt 34012 slerec 34013 bday1s 34025 leftf 34049 rightf 34050 madebdayim 34070 oldbdayim 34071 oldirr 34072 madebdaylemold 34078 madebdaylemlrcut 34079 madebday 34080 newbday 34082 lrcut 34083 cofcutr 34092 lrrecval2 34097 lrrecpo 34098 |
Copyright terms: Public domain | W3C validator |