![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27737 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6821 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 0elon 6440 | . 2 ⊢ ∅ ∈ On | |
5 | 3, 4 | f0cli 7118 | 1 ⊢ ( bday ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 6386 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 No csur 27699 bday cbday 27701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-1o 8505 df-no 27702 df-bday 27704 |
This theorem is referenced by: nocvxminlem 27837 scutbdaybnd2lim 27877 scutbdaylt 27878 slerec 27879 bday1s 27891 cuteq1 27893 leftf 27919 rightf 27920 madebdayim 27941 oldbdayim 27942 oldirr 27943 madebdaylemold 27951 madebdaylemlrcut 27952 madebday 27953 newbday 27955 lrcut 27956 0elold 27962 cofcutr 27973 lrrecval2 27988 lrrecpo 27989 addsproplem2 28018 addsproplem4 28020 addsproplem5 28021 addsproplem6 28022 addsproplem7 28023 addsprop 28024 addsbdaylem 28064 addsbday 28065 negsproplem2 28076 negsproplem4 28078 negsproplem5 28079 negsproplem6 28080 negsproplem7 28081 negsprop 28082 negsbdaylem 28103 mulsproplem2 28158 mulsproplem3 28159 mulsproplem4 28160 mulsproplem5 28161 mulsproplem6 28162 mulsproplem7 28163 mulsproplem8 28164 mulsproplem12 28168 mulsproplem13 28169 mulsproplem14 28170 mulsprop 28171 sltonold 28298 n0sbday 28369 pw2bday 28433 zs12bday 28439 |
Copyright terms: Public domain | W3C validator |