![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | β’ ( bday βπ΄) β On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27180 | . . 3 β’ bday : No βontoβOn | |
2 | fof 6806 | . . 3 β’ ( bday : No βontoβOn β bday : No βΆOn) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ bday : No βΆOn |
4 | 0elon 6419 | . 2 β’ β β On | |
5 | 3, 4 | f0cli 7100 | 1 β’ ( bday βπ΄) β On |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2107 Oncon0 6365 βΆwf 6540 βontoβwfo 6542 βcfv 6544 No csur 27143 bday cbday 27145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1o 8466 df-no 27146 df-bday 27148 |
This theorem is referenced by: nocvxminlem 27279 scutbdaybnd2lim 27318 scutbdaylt 27319 slerec 27320 bday1s 27332 cuteq1 27334 leftf 27360 rightf 27361 madebdayim 27382 oldbdayim 27383 oldirr 27384 madebdaylemold 27392 madebdaylemlrcut 27393 madebday 27394 newbday 27396 lrcut 27397 0elold 27402 cofcutr 27411 lrrecval2 27424 lrrecpo 27425 addsproplem2 27454 addsproplem4 27456 addsproplem5 27457 addsproplem6 27458 addsproplem7 27459 addsprop 27460 negsproplem2 27503 negsproplem4 27505 negsproplem5 27506 negsproplem6 27507 negsproplem7 27508 negsprop 27509 negsbdaylem 27530 mulsproplem2 27573 mulsproplem3 27574 mulsproplem4 27575 mulsproplem5 27576 mulsproplem6 27577 mulsproplem7 27578 mulsproplem8 27579 mulsproplem12 27583 mulsproplem13 27584 mulsproplem14 27585 mulsprop 27586 |
Copyright terms: Public domain | W3C validator |