Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayelon Structured version   Visualization version   GIF version

Theorem bdayelon 33971
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
bdayelon ( bday 𝐴) ∈ On

Proof of Theorem bdayelon
StepHypRef Expression
1 bdayfo 33880 . . 3 bday : No onto→On
2 fof 6688 . . 3 ( bday : No onto→On → bday : No ⟶On)
31, 2ax-mp 5 . 2 bday : No ⟶On
4 0elon 6319 . 2 ∅ ∈ On
53, 4f0cli 6974 1 ( bday 𝐴) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Oncon0 6266  wf 6429  ontowfo 6431  cfv 6433   No csur 33843   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-no 33846  df-bday 33848
This theorem is referenced by:  nocvxminlem  33972  scutbdaybnd2lim  34011  scutbdaylt  34012  slerec  34013  bday1s  34025  leftf  34049  rightf  34050  madebdayim  34070  oldbdayim  34071  oldirr  34072  madebdaylemold  34078  madebdaylemlrcut  34079  madebday  34080  newbday  34082  lrcut  34083  cofcutr  34092  lrrecval2  34097  lrrecpo  34098
  Copyright terms: Public domain W3C validator