| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27646 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6795 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 0elon 6412 | . 2 ⊢ ∅ ∈ On | |
| 5 | 3, 4 | f0cli 7093 | 1 ⊢ ( bday ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Oncon0 6357 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 No csur 27608 bday cbday 27610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1o 8485 df-no 27611 df-bday 27613 |
| This theorem is referenced by: nocvxminlem 27746 scutbdaybnd2lim 27786 scutbdaylt 27787 slerec 27788 bday1s 27800 cuteq1 27803 leftf 27834 rightf 27835 madebdayim 27856 oldbdayim 27857 oldirr 27858 madebdaylemold 27866 madebdaylemlrcut 27867 madebday 27868 newbday 27870 lrcut 27872 0elold 27878 cofcutr 27889 lrrecval2 27904 lrrecpo 27905 addsproplem2 27934 addsproplem4 27936 addsproplem5 27937 addsproplem6 27938 addsproplem7 27939 addsprop 27940 addsbdaylem 27980 addsbday 27981 negsproplem2 27992 negsproplem4 27994 negsproplem5 27995 negsproplem6 27996 negsproplem7 27997 negsprop 27998 negsbdaylem 28019 mulsproplem2 28077 mulsproplem3 28078 mulsproplem4 28079 mulsproplem5 28080 mulsproplem6 28081 mulsproplem7 28082 mulsproplem8 28083 mulsproplem12 28087 mulsproplem13 28088 mulsproplem14 28089 mulsprop 28090 sltonold 28219 onscutlt 28222 onnolt 28224 onslt 28225 onsiso 28226 n0sbday 28301 onsfi 28304 bdayn0p1 28315 zs12bday 28400 |
| Copyright terms: Public domain | W3C validator |