| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27617 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6735 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 0elon 6361 | . 2 ⊢ ∅ ∈ On | |
| 5 | 3, 4 | f0cli 7031 | 1 ⊢ ( bday ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Oncon0 6306 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 No csur 27579 bday cbday 27581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-1o 8385 df-no 27582 df-bday 27584 |
| This theorem is referenced by: nocvxminlem 27718 scutbdaybnd2lim 27759 scutbdaylt 27760 slerec 27761 bday1s 27776 cuteq1 27779 leftf 27811 rightf 27812 madebdayim 27834 oldbdayim 27835 oldirr 27836 madebdaylemold 27844 madebdaylemlrcut 27845 madebday 27846 newbday 27848 lrcut 27850 0elold 27856 bdayiun 27861 cofcutr 27869 lrrecval2 27884 lrrecpo 27885 addsproplem2 27914 addsproplem4 27916 addsproplem5 27917 addsproplem6 27918 addsproplem7 27919 addsprop 27920 addsbdaylem 27960 addsbday 27961 negsproplem2 27972 negsproplem4 27974 negsproplem5 27975 negsproplem6 27976 negsproplem7 27977 negsprop 27978 negsbdaylem 27999 mulsproplem2 28057 mulsproplem3 28058 mulsproplem4 28059 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulsproplem12 28067 mulsproplem13 28068 mulsproplem14 28069 mulsprop 28070 sltonold 28199 onscutlt 28202 onnolt 28204 onslt 28205 onsiso 28206 n0sbday 28281 onsfi 28284 bdayn0p1 28295 zs12bday 28395 |
| Copyright terms: Public domain | W3C validator |