Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 26931 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6744 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 0elon 6360 | . 2 ⊢ ∅ ∈ On | |
5 | 3, 4 | f0cli 7035 | 1 ⊢ ( bday ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Oncon0 6307 ⟶wf 6480 –onto→wfo 6482 ‘cfv 6484 No csur 26894 bday cbday 26896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-1o 8372 df-no 26897 df-bday 26899 |
This theorem is referenced by: nocvxminlem 27023 scutbdaybnd2lim 27062 scutbdaylt 27063 slerec 27064 bday1s 27076 leftf 34157 rightf 34158 madebdayim 34178 oldbdayim 34179 oldirr 34180 madebdaylemold 34186 madebdaylemlrcut 34187 madebday 34188 newbday 34190 lrcut 34191 cofcutr 34200 lrrecval2 34205 lrrecpo 34206 addsproplem2 34234 addsproplem4 34236 addsproplem5 34237 addsproplem6 34238 addsproplem7 34239 addsprop 34240 |
Copyright terms: Public domain | W3C validator |