![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version |
Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27740 | . . 3 ⊢ bday : No –onto→On | |
2 | fof 6834 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
4 | 0elon 6449 | . 2 ⊢ ∅ ∈ On | |
5 | 3, 4 | f0cli 7132 | 1 ⊢ ( bday ‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Oncon0 6395 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 No csur 27702 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-1o 8522 df-no 27705 df-bday 27707 |
This theorem is referenced by: nocvxminlem 27840 scutbdaybnd2lim 27880 scutbdaylt 27881 slerec 27882 bday1s 27894 cuteq1 27896 leftf 27922 rightf 27923 madebdayim 27944 oldbdayim 27945 oldirr 27946 madebdaylemold 27954 madebdaylemlrcut 27955 madebday 27956 newbday 27958 lrcut 27959 0elold 27965 cofcutr 27976 lrrecval2 27991 lrrecpo 27992 addsproplem2 28021 addsproplem4 28023 addsproplem5 28024 addsproplem6 28025 addsproplem7 28026 addsprop 28027 addsbdaylem 28067 addsbday 28068 negsproplem2 28079 negsproplem4 28081 negsproplem5 28082 negsproplem6 28083 negsproplem7 28084 negsprop 28085 negsbdaylem 28106 mulsproplem2 28161 mulsproplem3 28162 mulsproplem4 28163 mulsproplem5 28164 mulsproplem6 28165 mulsproplem7 28166 mulsproplem8 28167 mulsproplem12 28171 mulsproplem13 28172 mulsproplem14 28173 mulsprop 28174 sltonold 28301 n0sbday 28372 pw2bday 28436 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |