| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayelon | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function is always an ordinal. (Contributed by Scott Fenton, 14-Jun-2011.) (Proof shortened by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| bdayelon | ⊢ ( bday ‘𝐴) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27605 | . . 3 ⊢ bday : No –onto→On | |
| 2 | fof 6740 | . . 3 ⊢ ( bday : No –onto→On → bday : No ⟶On) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ bday : No ⟶On |
| 4 | 0elon 6366 | . 2 ⊢ ∅ ∈ On | |
| 5 | 3, 4 | f0cli 7036 | 1 ⊢ ( bday ‘𝐴) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Oncon0 6311 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 No csur 27567 bday cbday 27569 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-1o 8395 df-no 27570 df-bday 27572 |
| This theorem is referenced by: nocvxminlem 27706 scutbdaybnd2lim 27746 scutbdaylt 27747 slerec 27748 bday1s 27763 cuteq1 27766 leftf 27797 rightf 27798 madebdayim 27820 oldbdayim 27821 oldirr 27822 madebdaylemold 27830 madebdaylemlrcut 27831 madebday 27832 newbday 27834 lrcut 27836 0elold 27842 bdayiun 27847 cofcutr 27855 lrrecval2 27870 lrrecpo 27871 addsproplem2 27900 addsproplem4 27902 addsproplem5 27903 addsproplem6 27904 addsproplem7 27905 addsprop 27906 addsbdaylem 27946 addsbday 27947 negsproplem2 27958 negsproplem4 27960 negsproplem5 27961 negsproplem6 27962 negsproplem7 27963 negsprop 27964 negsbdaylem 27985 mulsproplem2 28043 mulsproplem3 28044 mulsproplem4 28045 mulsproplem5 28046 mulsproplem6 28047 mulsproplem7 28048 mulsproplem8 28049 mulsproplem12 28053 mulsproplem13 28054 mulsproplem14 28055 mulsprop 28056 sltonold 28185 onscutlt 28188 onnolt 28190 onslt 28191 onsiso 28192 n0sbday 28267 onsfi 28270 bdayn0p1 28281 zs12bday 28379 |
| Copyright terms: Public domain | W3C validator |