| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcl | Structured version Visualization version GIF version | ||
| Description: Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| harcl | ⊢ (har‘𝑋) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harf 9450 | . 2 ⊢ har:V⟶On | |
| 2 | 0elon 6362 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7032 | 1 ⊢ (har‘𝑋) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 Oncon0 6307 ‘cfv 6482 harchar 9448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-en 8873 df-dom 8874 df-oi 9402 df-har 9449 |
| This theorem is referenced by: harndom 9454 harcard 9874 harsdom 9891 onsdom 9892 harval2 9893 alephon 9963 dfac12lem2 10039 dfac12r 10041 hsmexlem9 10319 hsmexlem6 10325 pwcfsdom 10477 pwfseq 10558 gchaleph2 10566 hargch 10567 gchhar 10573 gchacg 10574 ttac 43009 isnumbasgrplem2 43077 isnumbasabl 43079 |
| Copyright terms: Public domain | W3C validator |