MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcl Structured version   Visualization version   GIF version

Theorem harcl 8735
Description: Closure of the Hartogs function in the ordinals. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
harcl (har‘𝑋) ∈ On

Proof of Theorem harcl
StepHypRef Expression
1 harf 8734 . 2 har:V⟶On
2 0elon 6016 . 2 ∅ ∈ On
31, 2f0cli 6619 1 (har‘𝑋) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2166  Vcvv 3414  Oncon0 5963  cfv 6123  harchar 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-wrecs 7672  df-recs 7734  df-en 8223  df-dom 8224  df-oi 8684  df-har 8732
This theorem is referenced by:  harndom  8738  harcard  9117  harsdom  9134  onsdom  9135  harval2  9136  alephon  9205  dfac12lem2  9281  dfac12r  9283  hsmexlem9  9562  hsmexlem6  9568  pwcfsdom  9720  pwfseq  9801  gchaleph2  9809  hargch  9810  gchhar  9816  gchacg  9817  ttac  38446  isnumbasgrplem2  38517  isnumbasabl  38519
  Copyright terms: Public domain W3C validator