Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > harcl | Structured version Visualization version GIF version |
Description: Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
harcl | ⊢ (har‘𝑋) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harf 9055 | . 2 ⊢ har:V⟶On | |
2 | 0elon 6222 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6855 | 1 ⊢ (har‘𝑋) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 Oncon0 6169 ‘cfv 6335 harchar 9053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-wrecs 7957 df-recs 8018 df-en 8528 df-dom 8529 df-oi 9007 df-har 9054 |
This theorem is referenced by: harndom 9059 harcard 9440 harsdom 9457 onsdom 9458 harval2 9459 alephon 9529 dfac12lem2 9604 dfac12r 9606 hsmexlem9 9885 hsmexlem6 9891 pwcfsdom 10043 pwfseq 10124 gchaleph2 10132 hargch 10133 gchhar 10139 gchacg 10140 ttac 40350 isnumbasgrplem2 40421 isnumbasabl 40423 |
Copyright terms: Public domain | W3C validator |