MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harcl Structured version   Visualization version   GIF version

Theorem harcl 9056
Description: Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
harcl (har‘𝑋) ∈ On

Proof of Theorem harcl
StepHypRef Expression
1 harf 9055 . 2 har:V⟶On
2 0elon 6222 . 2 ∅ ∈ On
31, 2f0cli 6855 1 (har‘𝑋) ∈ On
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3409  Oncon0 6169  cfv 6335  harchar 9053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-wrecs 7957  df-recs 8018  df-en 8528  df-dom 8529  df-oi 9007  df-har 9054
This theorem is referenced by:  harndom  9059  harcard  9440  harsdom  9457  onsdom  9458  harval2  9459  alephon  9529  dfac12lem2  9604  dfac12r  9606  hsmexlem9  9885  hsmexlem6  9891  pwcfsdom  10043  pwfseq  10124  gchaleph2  10132  hargch  10133  gchhar  10139  gchacg  10140  ttac  40350  isnumbasgrplem2  40421  isnumbasabl  40423
  Copyright terms: Public domain W3C validator