| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > harcl | Structured version Visualization version GIF version | ||
| Description: Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| harcl | ⊢ (har‘𝑋) ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harf 9577 | . 2 ⊢ har:V⟶On | |
| 2 | 0elon 6412 | . 2 ⊢ ∅ ∈ On | |
| 3 | 1, 2 | f0cli 7093 | 1 ⊢ (har‘𝑋) ∈ On |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 Oncon0 6357 ‘cfv 6536 harchar 9575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-en 8965 df-dom 8966 df-oi 9529 df-har 9576 |
| This theorem is referenced by: harndom 9581 harcard 9997 harsdom 10014 onsdom 10015 harval2 10016 alephon 10088 dfac12lem2 10164 dfac12r 10166 hsmexlem9 10444 hsmexlem6 10450 pwcfsdom 10602 pwfseq 10683 gchaleph2 10691 hargch 10692 gchhar 10698 gchacg 10699 ttac 43027 isnumbasgrplem2 43095 isnumbasabl 43097 |
| Copyright terms: Public domain | W3C validator |