![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > harcl | Structured version Visualization version GIF version |
Description: Closure of the Hartogs function in the ordinals. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
harcl | ⊢ (har‘𝑋) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harf 8734 | . 2 ⊢ har:V⟶On | |
2 | 0elon 6016 | . 2 ⊢ ∅ ∈ On | |
3 | 1, 2 | f0cli 6619 | 1 ⊢ (har‘𝑋) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2166 Vcvv 3414 Oncon0 5963 ‘cfv 6123 harchar 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-wrecs 7672 df-recs 7734 df-en 8223 df-dom 8224 df-oi 8684 df-har 8732 |
This theorem is referenced by: harndom 8738 harcard 9117 harsdom 9134 onsdom 9135 harval2 9136 alephon 9205 dfac12lem2 9281 dfac12r 9283 hsmexlem9 9562 hsmexlem6 9568 pwcfsdom 9720 pwfseq 9801 gchaleph2 9809 hargch 9810 gchhar 9816 gchacg 9817 ttac 38446 isnumbasgrplem2 38517 isnumbasabl 38519 |
Copyright terms: Public domain | W3C validator |