| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sadcf | Structured version Visualization version GIF version | ||
| Description: The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
| sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
| sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
| Ref | Expression |
|---|---|
| sadcf | ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12516 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 2 | iftrue 4506 | . . . . . . 7 ⊢ (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅) | |
| 3 | eqid 2735 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) | |
| 4 | 0ex 5277 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6986 | . . . . . 6 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅) |
| 6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅ |
| 7 | 4 | prid1 4738 | . . . . . 6 ⊢ ∅ ∈ {∅, 1o} |
| 8 | df2o3 8488 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleqtrri 2833 | . . . . 5 ⊢ ∅ ∈ 2o |
| 10 | 6, 9 | eqeltri 2830 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o) |
| 12 | df-ov 7408 | . . . . 5 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) = ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) | |
| 13 | 1oex 8490 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
| 14 | 13 | prid2 4739 | . . . . . . . . . 10 ⊢ 1o ∈ {∅, 1o} |
| 15 | 14, 8 | eleqtrri 2833 | . . . . . . . . 9 ⊢ 1o ∈ 2o |
| 16 | 15, 9 | ifcli 4548 | . . . . . . . 8 ⊢ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
| 17 | 16 | rgen2w 3056 | . . . . . . 7 ⊢ ∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
| 18 | eqid 2735 | . . . . . . . 8 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) | |
| 19 | 18 | fmpo 8067 | . . . . . . 7 ⊢ (∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o ↔ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o) |
| 20 | 17, 19 | mpbi 230 | . . . . . 6 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o |
| 21 | 20, 9 | f0cli 7088 | . . . . 5 ⊢ ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) ∈ 2o |
| 22 | 12, 21 | eqeltri 2830 | . . . 4 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o |
| 23 | 22 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 2o ∧ 𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o) |
| 24 | nn0uz 12894 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 25 | 0zd 12600 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 26 | fvexd 6891 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V) | |
| 27 | 11, 23, 24, 25, 26 | seqf2 14039 | . 2 ⊢ (𝜑 → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
| 28 | sadval.c | . . 3 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
| 29 | 28 | feq1i 6697 | . 2 ⊢ (𝐶:ℕ0⟶2o ↔ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
| 30 | 27, 29 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 caddwcad 1606 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ifcif 4500 {cpr 4603 〈cop 4607 ↦ cmpt 5201 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1oc1o 8473 2oc2o 8474 0cc0 11129 1c1 11130 + caddc 11132 − cmin 11466 ℕ0cn0 12501 ℤ≥cuz 12852 seqcseq 14019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-seq 14020 |
| This theorem is referenced by: sadcp1 16474 |
| Copyright terms: Public domain | W3C validator |