![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadcf | Structured version Visualization version GIF version |
Description: The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
Ref | Expression |
---|---|
sadcf | ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12486 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
2 | iftrue 4527 | . . . . . . 7 ⊢ (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅) | |
3 | eqid 2724 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) | |
4 | 0ex 5298 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 2, 3, 4 | fvmpt 6989 | . . . . . 6 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅ |
7 | 4 | prid1 4759 | . . . . . 6 ⊢ ∅ ∈ {∅, 1o} |
8 | df2o3 8470 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleqtrri 2824 | . . . . 5 ⊢ ∅ ∈ 2o |
10 | 6, 9 | eqeltri 2821 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o) |
12 | df-ov 7405 | . . . . 5 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) = ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘⟨𝑥, 𝑦⟩) | |
13 | 1oex 8472 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
14 | 13 | prid2 4760 | . . . . . . . . . 10 ⊢ 1o ∈ {∅, 1o} |
15 | 14, 8 | eleqtrri 2824 | . . . . . . . . 9 ⊢ 1o ∈ 2o |
16 | 15, 9 | ifcli 4568 | . . . . . . . 8 ⊢ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
17 | 16 | rgen2w 3058 | . . . . . . 7 ⊢ ∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
18 | eqid 2724 | . . . . . . . 8 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) | |
19 | 18 | fmpo 8048 | . . . . . . 7 ⊢ (∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o ↔ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o) |
20 | 17, 19 | mpbi 229 | . . . . . 6 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o |
21 | 20, 9 | f0cli 7090 | . . . . 5 ⊢ ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘⟨𝑥, 𝑦⟩) ∈ 2o |
22 | 12, 21 | eqeltri 2821 | . . . 4 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o |
23 | 22 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 2o ∧ 𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o) |
24 | nn0uz 12863 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
25 | 0zd 12569 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | fvexd 6897 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V) | |
27 | 11, 23, 24, 25, 26 | seqf2 13988 | . 2 ⊢ (𝜑 → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
28 | sadval.c | . . 3 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
29 | 28 | feq1i 6699 | . 2 ⊢ (𝐶:ℕ0⟶2o ↔ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
30 | 27, 29 | sylibr 233 | 1 ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 caddwcad 1599 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ⊆ wss 3941 ∅c0 4315 ifcif 4521 {cpr 4623 ⟨cop 4627 ↦ cmpt 5222 × cxp 5665 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 1oc1o 8455 2oc2o 8456 0cc0 11107 1c1 11108 + caddc 11110 − cmin 11443 ℕ0cn0 12471 ℤ≥cuz 12821 seqcseq 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-seq 13968 |
This theorem is referenced by: sadcp1 16399 |
Copyright terms: Public domain | W3C validator |