![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadcf | Structured version Visualization version GIF version |
Description: The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
Ref | Expression |
---|---|
sadcf | ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
2 | iftrue 4537 | . . . . . . 7 ⊢ (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅) | |
3 | eqid 2735 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) | |
4 | 0ex 5313 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 2, 3, 4 | fvmpt 7016 | . . . . . 6 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅ |
7 | 4 | prid1 4767 | . . . . . 6 ⊢ ∅ ∈ {∅, 1o} |
8 | df2o3 8513 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleqtrri 2838 | . . . . 5 ⊢ ∅ ∈ 2o |
10 | 6, 9 | eqeltri 2835 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o) |
12 | df-ov 7434 | . . . . 5 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) = ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) | |
13 | 1oex 8515 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
14 | 13 | prid2 4768 | . . . . . . . . . 10 ⊢ 1o ∈ {∅, 1o} |
15 | 14, 8 | eleqtrri 2838 | . . . . . . . . 9 ⊢ 1o ∈ 2o |
16 | 15, 9 | ifcli 4578 | . . . . . . . 8 ⊢ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
17 | 16 | rgen2w 3064 | . . . . . . 7 ⊢ ∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
18 | eqid 2735 | . . . . . . . 8 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) | |
19 | 18 | fmpo 8092 | . . . . . . 7 ⊢ (∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o ↔ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o) |
20 | 17, 19 | mpbi 230 | . . . . . 6 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o |
21 | 20, 9 | f0cli 7118 | . . . . 5 ⊢ ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) ∈ 2o |
22 | 12, 21 | eqeltri 2835 | . . . 4 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o |
23 | 22 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 2o ∧ 𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o) |
24 | nn0uz 12918 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
25 | 0zd 12623 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | fvexd 6922 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V) | |
27 | 11, 23, 24, 25, 26 | seqf2 14059 | . 2 ⊢ (𝜑 → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
28 | sadval.c | . . 3 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
29 | 28 | feq1i 6728 | . 2 ⊢ (𝐶:ℕ0⟶2o ↔ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
30 | 27, 29 | sylibr 234 | 1 ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 caddwcad 1603 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 ifcif 4531 {cpr 4633 〈cop 4637 ↦ cmpt 5231 × cxp 5687 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8498 2oc2o 8499 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 ℕ0cn0 12524 ℤ≥cuz 12876 seqcseq 14039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-seq 14040 |
This theorem is referenced by: sadcp1 16489 |
Copyright terms: Public domain | W3C validator |