![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sadcf | Structured version Visualization version GIF version |
Description: The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
sadval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
sadval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
sadval.c | ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
Ref | Expression |
---|---|
sadcf | ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11723 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
2 | iftrue 4351 | . . . . . . 7 ⊢ (𝑛 = 0 → if(𝑛 = 0, ∅, (𝑛 − 1)) = ∅) | |
3 | eqid 2773 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))) | |
4 | 0ex 5065 | . . . . . . 7 ⊢ ∅ ∈ V | |
5 | 2, 3, 4 | fvmpt 6594 | . . . . . 6 ⊢ (0 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) = ∅ |
7 | 4 | prid1 4569 | . . . . . 6 ⊢ ∅ ∈ {∅, 1o} |
8 | df2o3 7918 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleqtrri 2860 | . . . . 5 ⊢ ∅ ∈ 2o |
10 | 6, 9 | eqeltri 2857 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘0) ∈ 2o) |
12 | df-ov 6978 | . . . . 5 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) = ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) | |
13 | 1oex 7912 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
14 | 13 | prid2 4570 | . . . . . . . . . 10 ⊢ 1o ∈ {∅, 1o} |
15 | 14, 8 | eleqtrri 2860 | . . . . . . . . 9 ⊢ 1o ∈ 2o |
16 | 15, 9 | ifcli 4391 | . . . . . . . 8 ⊢ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
17 | 16 | rgen2w 3096 | . . . . . . 7 ⊢ ∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o |
18 | eqid 2773 | . . . . . . . 8 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) = (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)) | |
19 | 18 | fmpo 7573 | . . . . . . 7 ⊢ (∀𝑐 ∈ 2o ∀𝑚 ∈ ℕ0 if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅) ∈ 2o ↔ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o) |
20 | 17, 19 | mpbi 222 | . . . . . 6 ⊢ (𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)):(2o × ℕ0)⟶2o |
21 | 20, 9 | f0cli 6686 | . . . . 5 ⊢ ((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))‘〈𝑥, 𝑦〉) ∈ 2o |
22 | 12, 21 | eqeltri 2857 | . . . 4 ⊢ (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o |
23 | 22 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 2o ∧ 𝑦 ∈ V)) → (𝑥(𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅))𝑦) ∈ 2o) |
24 | nn0uz 12093 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
25 | 0zd 11804 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
26 | fvexd 6512 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(0 + 1))) → ((𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))‘𝑥) ∈ V) | |
27 | 11, 23, 24, 25, 26 | seqf2 13203 | . 2 ⊢ (𝜑 → seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
28 | sadval.c | . . 3 ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
29 | 28 | feq1i 6333 | . 2 ⊢ (𝐶:ℕ0⟶2o ↔ seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))):ℕ0⟶2o) |
30 | 27, 29 | sylibr 226 | 1 ⊢ (𝜑 → 𝐶:ℕ0⟶2o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 caddwcad 1570 ∈ wcel 2051 ∀wral 3083 Vcvv 3410 ⊆ wss 3824 ∅c0 4173 ifcif 4345 {cpr 4438 〈cop 4442 ↦ cmpt 5005 × cxp 5402 ⟶wf 6182 ‘cfv 6186 (class class class)co 6975 ∈ cmpo 6977 1oc1o 7897 2oc2o 7898 0cc0 10334 1c1 10335 + caddc 10337 − cmin 10669 ℕ0cn0 11706 ℤ≥cuz 12057 seqcseq 13183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-seq 13184 |
This theorem is referenced by: sadcp1 15663 |
Copyright terms: Public domain | W3C validator |